Abstract:A fundamental challenge in Continual Learning (CL) is catastrophic forgetting, where adapting to new tasks degrades the performance on previous ones. While the field has evolved with diverse methods, this rapid surge in diverse methodologies has culminated in a fragmented research landscape. The lack of a unified framework, including inconsistent implementations, conflicting dependencies, and varying evaluation protocols, makes fair comparison and reproducible research increasingly difficult. To address this challenge, we propose LibContinual, a comprehensive and reproducible library designed to serve as a foundational platform for realistic CL. Built upon a high-cohesion, low-coupling modular architecture, LibContinual integrates 19 representative algorithms across five major methodological categories, providing a standardized execution environment. Meanwhile, leveraging this unified framework, we systematically identify and investigate three implicit assumptions prevalent in mainstream evaluation: (1) offline data accessibility, (2) unregulated memory resources, and (3) intra-task semantic homogeneity. We argue that these assumptions often overestimate the real-world applicability of CL methods. Through our comprehensive analysis using strict online CL settings, a novel unified memory budget protocol, and a proposed category-randomized setting, we reveal significant performance drops in many representative CL methods when subjected to these real-world constraints. Our study underscores the necessity of resource-aware and semantically robust CL strategies, and offers LibContinual as a foundational toolkit for future research in realistic continual learning. The source code is available from \href{https://github.com/RL-VIG/LibContinual}{https://github.com/RL-VIG/LibContinual}.
Abstract:Continual learning in vision-language models (VLMs) faces critical challenges in balancing parameter efficiency, memory consumption, and optimization stability. While First-Order (FO) optimization (e.g., SGD) dominate current approaches, their deterministic gradients often trap models in suboptimal local minima and incur substantial memory overhead. This paper pioneers a systematic exploration of Zeroth-Order (ZO) optimization for vision-language continual learning (VLCL). We first identify the incompatibility of naive full-ZO adoption in VLCL due to modality-specific instability. To resolve this, we selectively applying ZO to either vision or language modalities while retaining FO in the complementary branch. Furthermore, we develop a layer-wise optimization paradigm that interleaves ZO and FO across network layers, capitalizing on the heterogeneous learning dynamics of shallow versus deep representations. A key theoretical insight reveals that ZO perturbations in vision branches exhibit higher variance than language counterparts, prompting a gradient sign normalization mechanism with modality-specific perturbation constraints. Extensive experiments on four benchmarks demonstrate that our method achieves state-of-the-art performance, reducing memory consumption by 89.1% compared to baselines. Code will be available upon publication.