Abstract:Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.
Abstract:Fine-tuning LLMs with datasets containing stealthy backdoors from publishers poses security risks to downstream applications. Mainstream detection methods either identify poisoned samples by analyzing the prediction probability of poisoned classification models or rely on the rewriting model to eliminate the stealthy triggers. However, the former cannot be applied to generation tasks, while the latter may degrade generation performance and introduce new triggers. Therefore, efficiently eliminating stealthy poisoned samples for LLMs remains an urgent problem. We observe that after applying TF-IDF clustering to the sample response, there are notable differences in the intra-class distances between clean and poisoned samples. Poisoned samples tend to cluster closely because of their specific malicious outputs, whereas clean samples are more scattered due to their more varied responses. Thus, in this paper, we propose a stealthy backdoor sample detection method based on Reference-Filtration and Tfidf-Clustering mechanisms (RFTC). Specifically, we first compare the sample response with the reference model's outputs and consider the sample suspicious if there's a significant discrepancy. And then we perform TF-IDF clustering on these suspicious samples to identify the true poisoned samples based on the intra-class distance. Experiments on two machine translation datasets and one QA dataset demonstrate that RFTC outperforms baselines in backdoor detection and model performance. Further analysis of different reference models also confirms the effectiveness of our Reference-Filtration.
Abstract:Speech disorders such as dysarthria and anarthria can severely impair the patient's ability to communicate verbally. Speech decoding brain-computer interfaces (BCIs) offer a potential alternative by directly translating speech intentions into spoken words, serving as speech neuroprostheses. This paper reports an experimental protocol for Mandarin Chinese speech decoding BCIs, along with the corresponding decoding algorithms. Stereo-electroencephalography (SEEG) and synchronized audio data were collected from eight drug-resistant epilepsy patients as they conducted a word-level reading task. The proposed SEEG and Audio Contrastive Matching (SACM), a contrastive learning-based framework, achieved decoding accuracies significantly exceeding chance levels in both speech detection and speech decoding tasks. Electrode-wise analysis revealed that a single sensorimotor cortex electrode achieved performance comparable to that of the full electrode array. These findings provide valuable insights for developing more accurate online speech decoding BCIs.
Abstract:Recent high-capacity vision-language-action (VLA) models have demonstrated impressive performance on a range of robotic manipulation tasks by imitating human demonstrations. However, exploiting offline data with limited visited states will cause execution failure in out-of-distribution scenarios. Intuitively, an exploration-based method that improves on online collected data at test time could address this limitation. We present VLA-RL, an algorithmic and systematic framework that leverages online reinforcement learning (RL) to improve pretrained auto-regressive VLAs in downstream tasks. Within a unified perspective, we first introduce a trajectory-level RL formulation for auto-regressive VLA training, which models general robotic manipulation trajectory as multi-modal multi-turn conversation. To address the challenge of sparse rewards, we fine-tune a pretrained vision-language model as a robotic process reward model, which is trained on pseudo reward labels annotated on automatically extracted task segments. To scale up, we identify several implementation findings that improve the stability and efficiency including curriculum selection strategy, GPU-balanced vectorized environments, batch decoding, and critic warmup. VLA-RL enables OpenVLA-7B to surpass the strongest finetuned baseline by 4.5% on 40 challenging robotic manipulation tasks in LIBERO, and even matches the performance of advanced commercial models such as $\pi_0$-FAST. Notably, we observe that VLA-RL benefits from increased test-time optimization, indicating an early spark of inference scaling laws in robotics.
Abstract:Private data is typically larger and of higher quality than public data, offering great potential to improve LLM. However, its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based split learning model has emerged, offloading most model parameters to the server while retaining only the embedding and output layers on clients to ensure privacy. However, it still faces significant challenges in security, efficiency, and adaptability: 1) embedding gradients are vulnerable to attacks, leading to reverse engineering of private data; 2) the autoregressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FL-LLaMA, a secure, efficient, and adaptive federated split framework based on LLaMA2. First, we place some input and output blocks on the local client and inject Gaussian noise into forward-pass hidden states, enabling secure end-to-end propagation. Second, we employ client-batch and server-hierarchical strategies to achieve parallel training, along with attention-mask compression and KV cache mechanisms to accelerate inference, reducing communication costs effectively. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements and hardware limitations. Experiments on NLU, summarization and conversational QA tasks show that FL-LLaMA maintains performance comparable to centralized LLaMA2, and achieves up to 2x train speedups and 8x inference speedups. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FL-LLaMA in security and adaptability.
Abstract:In cloud services, virtual machine (VM) scheduling is a typical Online Dynamic Multidimensional Bin Packing (ODMBP) problem, characterized by large-scale complexity and fluctuating demands. Traditional optimization methods struggle to adapt to real-time changes, domain-expert-designed heuristic approaches suffer from rigid strategies, and existing learning-based methods often lack generalizability and interpretability. To address these limitations, this paper proposes a hierarchical language agent framework named MiCo, which provides a large language model (LLM)-driven heuristic design paradigm for solving ODMBP. Specifically, ODMBP is formulated as a Semi-Markov Decision Process with Options (SMDP-Option), enabling dynamic scheduling through a two-stage architecture, i.e., Option Miner and Option Composer. Option Miner utilizes LLMs to discover diverse and useful non-context-aware strategies by interacting with constructed environments. Option Composer employs LLMs to discover a composing strategy that integrates the non-context-aware strategies with the contextual ones. Extensive experiments on real-world enterprise datasets demonstrate that MiCo achieves a 96.9\% competitive ratio in large-scale scenarios involving more than 10,000 virtual machines. It maintains high performance even under nonstationary request flows and diverse configurations, thus validating its effectiveness in complex and large-scale cloud environments.
Abstract:Events cameras are ideal sensors for enabling robots to detect and track objects in highly dynamic environments due to their low latency output, high temporal resolution, and high dynamic range. In this paper, we present the Asynchronous Event Multi-Object Tracking (AEMOT) algorithm for detecting and tracking multiple objects by processing individual raw events asynchronously. AEMOT detects salient event blob features by identifying regions of consistent optical flow using a novel Field of Active Flow Directions built from the Surface of Active Events. Detected features are tracked as candidate objects using the recently proposed Asynchronous Event Blob (AEB) tracker in order to construct small intensity patches of each candidate object. A novel learnt validation stage promotes or discards candidate objects based on classification of their intensity patches, with promoted objects having their position, velocity, size, and orientation estimated at their event rate. We evaluate AEMOT on a new Bee Swarm Dataset, where it tracks dozens of small bees with precision and recall performance exceeding that of alternative event-based detection and tracking algorithms by over 37%. Source code and the labelled event Bee Swarm Dataset will be open sourced
Abstract:Large language models (LLMs) excel at generating code from natural language instructions, yet they often lack an understanding of security vulnerabilities. This limitation makes it difficult for LLMs to avoid security risks in generated code, particularly in high-security programming tasks such as smart contract development for blockchain. Researchers have attempted to enhance the vulnerability awareness of these models by training them to differentiate between vulnerable and fixed code snippets. However, this approach relies heavily on manually labeled vulnerability data, which is only available for popular languages like Python and C++. For low-resource languages like Solidity, used in smart contracts, large-scale annotated datasets are scarce and difficult to obtain. To address this challenge, we introduce CodeBC, a code generation model specifically designed for generating secure smart contracts in blockchain. CodeBC employs a three-stage fine-tuning approach based on CodeLlama, distinguishing itself from previous methods by not relying on pairwise vulnerability location annotations. Instead, it leverages vulnerability and security tags to teach the model the differences between vulnerable and secure code. During the inference phase, the model leverages security tags to generate secure and robust code. Experimental results demonstrate that CodeBC outperforms baseline models in terms of BLEU, CodeBLEU, and compilation pass rates, while significantly reducing vulnerability rates. These findings validate the effectiveness and cost-efficiency of our three-stage fine-tuning strategy, making CodeBC a promising solution for generating secure smart contract code.
Abstract:While multimodal large language models demonstrate strong performance in complex reasoning tasks, they pose significant challenges related to model complexity during deployment, especially for resource-limited devices. In this paper, we propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning. Conventional methods rely on the training data of the original model to select the proper pruning ratio for different network components. However, these methods are impractical for large vision-language models due to the unaffordable search costs caused by web-scale training corpus. In contrast, our approach only leverages a small number of samples to search for the desired pruning policy by maximizing its generalization ability on unknown training data while maintaining the model accuracy, which enables the achievement of an optimal trade-off between accuracy and efficiency for large visual language models. Specifically, we formulate the generalization gap of the pruning strategy using the structural risk minimization principle. Based on both task performance and generalization capability, we iteratively search for the optimal pruning policy within a given search space and optimize the vision projector to evolve the search space with higher upper bound of performance. We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering. Using only 64 samples for pruning policy search, EfficientLLaVA achieves an accuracy of 83.05% on ScienceQA, along with a $\times$ 1.8 speedup compared to the dense LLaVA-v1.5-7B model.
Abstract:Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.