Abstract:Large Language Models (LLMs) show strong collaborative performance in multi-agent systems with predefined roles and workflows. However, in open-ended environments lacking coordination rules, agents tend to act in self-interested ways. The central challenge in achieving coordination lies in credit assignment -- fairly evaluating each agent's contribution and designing pricing mechanisms that align their heterogeneous goals. This problem is critical as LLMs increasingly participate in complex human-AI collaborations, where fair compensation and accountability rely on effective pricing mechanisms. Inspired by how human societies address similar coordination challenges (e.g., through temporary collaborations such as employment or subcontracting), we propose a cooperative workflow, Shapley-Coop. Shapley-Coop integrates Shapley Chain-of-Thought -- leveraging marginal contributions as a principled basis for pricing -- with structured negotiation protocols for effective price matching, enabling LLM agents to coordinate through rational task-time pricing and post-task reward redistribution. This approach aligns agent incentives, fosters cooperation, and maintains autonomy. We evaluate Shapley-Coop across two multi-agent games and a software engineering simulation, demonstrating that it consistently enhances LLM agent collaboration and facilitates equitable credit assignment. These results highlight the effectiveness of Shapley-Coop's pricing mechanisms in accurately reflecting individual contributions during task execution.
Abstract:Low light images captured in a non-uniform illumination environment usually are degraded with the scene depth and the corresponding environment lights. This degradation results in severe object information loss in the degraded image modality, which makes the salient object detection more challenging due to low contrast property and artificial light influence. However, existing salient object detection models are developed based on the assumption that the images are captured under a sufficient brightness environment, which is impractical in real-world scenarios. In this work, we propose an image enhancement approach to facilitate the salient object detection in low light images. The proposed model directly embeds the physical lighting model into the deep neural network to describe the degradation of low light images, in which the environment light is treated as a point-wise variate and changes with local content. Moreover, a Non-Local-Block Layer is utilized to capture the difference of local content of an object against its local neighborhood favoring regions. To quantitative evaluation, we construct a low light Images dataset with pixel-level human-labeled ground-truth annotations and report promising results on four public datasets and our benchmark dataset.