Abstract:Outdoor health monitoring is essential to detect early abnormal health status for safeguarding human health and safety. Conventional outdoor monitoring relies on static multimodal deep learning frameworks, which requires extensive data training from scratch and fails to capture subtle health status changes. Multimodal large language models (MLLMs) emerge as a promising alternative, utilizing only small datasets to fine-tune pre-trained information-rich models for enabling powerful health status monitoring. Unfortunately, MLLM-based outdoor health monitoring also faces significant challenges: I) sensor data contains input noise stemming from sensor data acquisition and fluctuation noise caused by sudden changes in physiological signals due to dynamic outdoor environments, thus degrading the training performance; ii) current transformer based MLLMs struggle to achieve robust multimodal fusion, as they lack a design for fusing the noisy modality; iii) modalities with varying noise levels hinder accurate recovery of missing data from fluctuating distributions. To combat these challenges, we propose an uncertainty-aware multimodal fusion framework, named DUAL-Health, for outdoor health monitoring in dynamic and noisy environments. First, to assess the impact of noise, we accurately quantify modality uncertainty caused by input and fluctuation noise with current and temporal features. Second, to empower efficient muitimodal fusion with low-quality modalities,we customize the fusion weight for each modality based on quantified and calibrated uncertainty. Third, to enhance data recovery from fluctuating noisy modalities, we align modality distributions within a common semantic space. Extensive experiments demonstrate that our DUAL-Health outperforms state-of-the-art baselines in detection accuracy and robustness.
Abstract:Deep anchor-based multi-view clustering methods enhance the scalability of neural networks by utilizing representative anchors to reduce the computational complexity of large-scale clustering. Despite their scalability advantages, existing approaches often incorporate anchor structures in a heuristic or task-agnostic manner, either through post-hoc graph construction or as auxiliary components for message passing. Such designs overlook the core structural demands of anchor-based clustering, neglecting key optimization principles. To bridge this gap, we revisit the underlying optimization problem of large-scale anchor-based multi-view clustering and unfold its iterative solution into a novel deep network architecture, termed LargeMvC-Net. The proposed model decomposes the anchor-based clustering process into three modules: RepresentModule, NoiseModule, and AnchorModule, corresponding to representation learning, noise suppression, and anchor indicator estimation. Each module is derived by unfolding a step of the original optimization procedure into a dedicated network component, providing structural clarity and optimization traceability. In addition, an unsupervised reconstruction loss aligns each view with the anchor-induced latent space, encouraging consistent clustering structures across views. Extensive experiments on several large-scale multi-view benchmarks show that LargeMvC-Net consistently outperforms state-of-the-art methods in terms of both effectiveness and scalability.
Abstract:Recently, large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond. Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream. Though federated learning (FL) offers a promising solution for fine-tuning LLMs without sharing raw data, substantial computing costs hinder its democratization. Moreover, in real-world scenarios, private client devices often possess heterogeneous computing resources, further complicating LLM fine-tuning. To combat these challenges, we propose HSplitLoRA, a heterogeneous parameter-efficient fine-tuning (PEFT) framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices. HSplitLoRA first identifies important weights based on their contributions to LLM training. It then dynamically configures the decomposition ranks of LoRA adapters for selected weights and determines the model split point according to varying computing budgets of client devices. Finally, a noise-free adapter aggregation mechanism is devised to support heterogeneous adapter aggregation without introducing noise. Extensive experiments demonstrate that HSplitLoRA outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
Abstract:Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
Abstract:Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
Abstract:Collaborative perception (CP) is a promising method for safe connected and autonomous driving, which enables multiple vehicles to share sensing information to enhance perception performance. However, compared with single-vehicle perception, the openness of a CP system makes it more vulnerable to malicious attacks that can inject malicious information to mislead the perception of an ego vehicle, resulting in severe risks for safe driving. To mitigate such vulnerability, we first propose a new paradigm for malicious agent detection that effectively identifies malicious agents at the feature level without requiring verification of final perception results, significantly reducing computational overhead. Building on this paradigm, we introduce CP-GuardBench, the first comprehensive dataset provided to train and evaluate various malicious agent detection methods for CP systems. Furthermore, we develop a robust defense method called CP-Guard+, which enhances the margin between the representations of benign and malicious features through a carefully designed Dual-Centered Contrastive Loss (DCCLoss). Finally, we conduct extensive experiments on both CP-GuardBench and V2X-Sim, and demonstrate the superiority of CP-Guard+.
Abstract:Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.
Abstract:Multi-view learning methods leverage multiple data sources to enhance perception by mining correlations across views, typically relying on predefined categories. However, deploying these models in real-world scenarios presents two primary openness challenges. 1) Lack of Interpretability: The integration mechanisms of multi-view data in existing black-box models remain poorly explained; 2) Insufficient Generalization: Most models are not adapted to multi-view scenarios involving unknown categories. To address these challenges, we propose OpenViewer, an openness-aware multi-view learning framework with theoretical support. This framework begins with a Pseudo-Unknown Sample Generation Mechanism to efficiently simulate open multi-view environments and previously adapt to potential unknown samples. Subsequently, we introduce an Expression-Enhanced Deep Unfolding Network to intuitively promote interpretability by systematically constructing functional prior-mapping modules and effectively providing a more transparent integration mechanism for multi-view data. Additionally, we establish a Perception-Augmented Open-Set Training Regime to significantly enhance generalization by precisely boosting confidences for known categories and carefully suppressing inappropriate confidences for unknown ones. Experimental results demonstrate that OpenViewer effectively addresses openness challenges while ensuring recognition performance for both known and unknown samples. The code is released at https://github.com/dushide/OpenViewer.
Abstract:Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
Abstract:Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.