Abstract:Spatio-temporal prediction is a pivotal task with broad applications in traffic management, climate monitoring, energy scheduling, etc. However, existing methodologies often struggle to balance model expressiveness and computational efficiency, especially when scaling to large real-world datasets. To tackle these challenges, we propose STH-SepNet (Spatio-Temporal Hypergraph Separation Networks), a novel framework that decouples temporal and spatial modeling to enhance both efficiency and precision. Therein, the temporal dimension is modeled using lightweight large language models, which effectively capture low-rank temporal dynamics. Concurrently, the spatial dimension is addressed through an adaptive hypergraph neural network, which dynamically constructs hyperedges to model intricate, higher-order interactions. A carefully designed gating mechanism is integrated to seamlessly fuse temporal and spatial representations. By leveraging the fundamental principles of low-rank temporal dynamics and spatial interactions, STH-SepNet offers a pragmatic and scalable solution for spatio-temporal prediction in real-world applications. Extensive experiments on large-scale real-world datasets across multiple benchmarks demonstrate the effectiveness of STH-SepNet in boosting predictive performance while maintaining computational efficiency. This work may provide a promising lightweight framework for spatio-temporal prediction, aiming to reduce computational demands and while enhancing predictive performance. Our code is avaliable at https://github.com/SEU-WENJIA/ST-SepNet-Lightweight-LLMs-Meet-Adaptive-Hypergraphs.
Abstract:Counterfactual thinking is a critical yet challenging topic for artificial intelligence to learn knowledge from data and ultimately improve their performances for new scenarios. Many research works, including Potential Outcome Model and Structural Causal Model, have been proposed to realize it. However, their modelings, theoretical foundations and application approaches are usually different. Moreover, there is a lack of graphical approach to infer spatio-temporal counterfactuals, that considers spatial and temporal interactions between multiple units. Thus, in this work, our aim is to investigate a survey to compare and discuss different counterfactual models, theories and approaches, and further build a unified graphical causal frameworks to infer the spatio-temporal counterfactuals.
Abstract:Time-series prediction has drawn considerable attention during the past decades fueled by the emerging advances of deep learning methods. However, most neural network based methods lack interpretability and fail in extracting the hidden mechanism of the targeted physical system. To overcome these shortcomings, an interpretable sparse system identification method without any prior knowledge is proposed in this study. This method adopts the Fourier transform to reduces the irrelevant items in the dictionary matrix, instead of indiscriminate usage of polynomial functions in most system identification methods. It shows an interpretable system representation and greatly reduces computing cost. With the adoption of $l_1$ norm in regularizing the parameter matrix, a sparse description of the system model can be achieved. Moreover, Three data sets including the water conservancy data, global temperature data and financial data are used to test the performance of the proposed method. Although no prior knowledge was known about the physical background, experimental results show that our method can achieve long-term prediction regardless of the noise and incompleteness in the original data more accurately than the widely-used baseline data-driven methods. This study may provide some insight into time-series prediction investigations, and suggests that an white-box system identification method may extract the easily overlooked yet inherent periodical features and may beat neural-network based black-box methods on long-term prediction tasks.
Abstract:Identifying causality is a challenging task in many data-intensive scenarios. Many algorithms have been proposed for this critical task. However, most of them consider the learning algorithms for directed acyclic graph (DAG) of Bayesian network (BN). These BN-based models only have limited causal explainability because of the issue of Markov equivalence class. Moreover, they are dependent on the assumption of stationarity, whereas many sampling time series from complex system are nonstationary. The nonstationary time series bring dataset shift problem, which leads to the unsatisfactory performances of these algorithms. To fill these gaps, a novel causation model named Unique Causal Network (UCN) is proposed in this paper. Different from the previous BN-based models, UCN considers the influence of time delay, and proves the uniqueness of obtained network structure, which addresses the issue of Markov equivalence class. Furthermore, based on the decomposability property of UCN, a higher-order causal entropy (HCE) algorithm is designed to identify the structure of UCN in a distributed way. HCE algorithm measures the strength of causality by using nearest-neighbors entropy estimator, which works well on nonstationary time series. Finally, lots of experiments validate that HCE algorithm achieves state-of-the-art accuracy when time series are nonstationary, compared to the other baseline algorithms.