Alert button
Picture for Min Zhang

Min Zhang

Alert button

Clustering Pseudo Language Family in Multilingual Translation Models with Fisher Information Matrix

Dec 05, 2023
Xinyu Ma, Xuebo Liu, Min Zhang

In multilingual translation research, the comprehension and utilization of language families are of paramount importance. Nevertheless, clustering languages based solely on their ancestral families can yield suboptimal results due to variations in the datasets employed during the model's training phase. To mitigate this challenge, we introduce an innovative method that leverages the fisher information matrix (FIM) to cluster language families, anchored on the multilingual translation model's characteristics. We hypothesize that language pairs with similar effects on model parameters exhibit a considerable degree of linguistic congruence and should thus be grouped cohesively. This concept has led us to define pseudo language families. We provide an in-depth discussion regarding the inception and application of these pseudo language families. Empirical evaluations reveal that employing these pseudo language families enhances performance over conventional language families in adapting a multilingual translation model to unfamiliar language pairs. The proposed methodology may also be extended to scenarios requiring language similarity measurements. The source code and associated scripts can be accessed at

* Accepted to EMNLP 2023 
Viaarxiv icon

RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement

Nov 28, 2023
Longhui Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, Meishan Zhang, Min Zhang

Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.

* Work in progress 
Viaarxiv icon

Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage and Sharing in LLMs

Nov 27, 2023
Yunxin Li, Baotian Hu, Wei Wang, Xiaochun Cao, Min Zhang

Recent advancements in multimodal large language models (MLLMs) have achieved significant multimodal generation capabilities, akin to GPT-4. These models predominantly map visual information into language representation space, leveraging the vast knowledge and powerful text generation abilities of LLMs to produce multimodal instruction-following responses. We could term this method as LLMs for Vision because of its employing LLMs for visual-language understanding, yet observe that these MLLMs neglect the potential of harnessing visual knowledge to enhance overall capabilities of LLMs, which could be regraded as Vision Enhancing LLMs. In this paper, we propose an approach called MKS2, aimed at enhancing LLMs through empowering Multimodal Knowledge Storage and Sharing in LLMs. Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently. Additionally, we present a soft Mixtures-of-Multimodal Experts architecture in LLMs to invoke multimodal knowledge collaboration during generation. Our comprehensive experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge. It also delivers competitive results on multimodal benchmarks.

* 12 pages, 4 figures 
Viaarxiv icon

Mirror: A Universal Framework for Various Information Extraction Tasks

Nov 26, 2023
Tong Zhu, Junfei Ren, Zijian Yu, Mengsong Wu, Guoliang Zhang, Xiaoye Qu, Wenliang Chen, Zhefeng Wang, Baoxing Huai, Min Zhang

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at .

* Accepted to EMNLP23 main conference 
Viaarxiv icon

Automatic Instruction Optimization for Open-source LLM Instruction Tuning

Nov 22, 2023
Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wenbing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao Zhang, Min Zhang, Hongxia Ma, Li Zhang, Hao Yang, Yanfei Jiang

Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (

Viaarxiv icon

Addressing the Length Bias Problem in Document-Level Neural Machine Translation

Nov 20, 2023
Zhuocheng Zhang, Shuhao Gu, Min Zhang, Yang Feng

Document-level neural machine translation (DNMT) has shown promising results by incorporating more context information. However, this approach also introduces a length bias problem, whereby DNMT suffers from significant translation quality degradation when decoding documents that are much shorter or longer than the maximum sequence length during training. %i.e., the length bias problem. To solve the length bias problem, we propose to improve the DNMT model in training method, attention mechanism, and decoding strategy. Firstly, we propose to sample the training data dynamically to ensure a more uniform distribution across different sequence lengths. Then, we introduce a length-normalized attention mechanism to aid the model in focusing on target information, mitigating the issue of attention divergence when processing longer sequences. Lastly, we propose a sliding window strategy during decoding that integrates as much context information as possible without exceeding the maximum sequence length. The experimental results indicate that our method can bring significant improvements on several open datasets, and further analysis shows that our method can significantly alleviate the length bias problem.

* Accepted by EMNLP2023 Findings 
Viaarxiv icon

Language Generation from Human Brain Activities

Nov 19, 2023
Ziyi Ye, Qingyao Ai, Yiqun Liu, Min Zhang, Christina Lioma, Tuukka Ruotsalo

Generating human language through non-invasive brain-computer interfaces (BCIs) has the potential to unlock many applications, such as serving disabled patients and improving communication. Currently, however, generating language via BCIs has been previously successful only within a classification setup for selecting pre-generated sentence continuation candidates with the most likely cortical semantic representation. Inspired by recent research that revealed associations between the brain and the large computational language models, we propose a generative language BCI that utilizes the capacity of a large language model (LLM) jointly with a semantic brain decoder to directly generate language from functional magnetic resonance imaging (fMRI) input. The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli perceived, without prior knowledge of any pre-generated candidates. We compare the language generated from the presented model with a random control, pre-generated language selection approach, and a standard LLM, which generates common coherent text solely based on the next word likelihood according to statistical language training data. The proposed model is found to generate language that is more aligned with semantic stimulus in response to which brain input is sampled. Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.

* Preprint. Under Submission 
Viaarxiv icon

Collaborative Word-based Pre-trained Item Representation for Transferable Recommendation

Nov 17, 2023
Shenghao Yang, Chenyang Wang, Yankai Liu, Kangping Xu, Weizhi Ma, Yiqun Liu, Min Zhang, Haitao Zeng, Junlan Feng, Chao Deng

Item representation learning (IRL) plays an essential role in recommender systems, especially for sequential recommendation. Traditional sequential recommendation models usually utilize ID embeddings to represent items, which are not shared across different domains and lack the transferable ability. Recent studies use pre-trained language models (PLM) for item text embeddings (text-based IRL) that are universally applicable across domains. However, the existing text-based IRL is unaware of the important collaborative filtering (CF) information. In this paper, we propose CoWPiRec, an approach of Collaborative Word-based Pre-trained item representation for Recommendation. To effectively incorporate CF information into text-based IRL, we convert the item-level interaction data to a word graph containing word-level collaborations. Subsequently, we design a novel pre-training task to align the word-level semantic- and CF-related item representation. Extensive experimental results on multiple public datasets demonstrate that compared to state-of-the-art transferable sequential recommenders, CoWPiRec achieves significantly better performances in both fine-tuning and zero-shot settings for cross-scenario recommendation and effectively alleviates the cold-start issue. The code is available at:

* Accepted by ICDM 2023 
Viaarxiv icon

Temporal Knowledge Question Answering via Abstract Reasoning Induction

Nov 15, 2023
Ziyang Chen, Dongfang Li, Xiang Zhao, Baotian Hu, Min Zhang

In this paper, we tackle the significant challenge of temporal knowledge reasoning in Large Language Models (LLMs), an area where such models frequently encounter difficulties. These difficulties often result in the generation of misleading or incorrect information, primarily due to their limited capacity to process evolving factual knowledge and complex temporal logic. In response, we propose a novel, constructivism-based approach that advocates for a paradigm shift in LLM learning towards an active, ongoing process of knowledge synthesis and customization. At the heart of our proposal is the Abstract Reasoning Induction ARI framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based. This division aims to reduce instances of hallucinations and improve LLMs' capacity for integrating abstract methodologies derived from historical data. Our approach achieves remarkable improvements, with relative gains of 29.7\% and 9.27\% on two temporal QA datasets, underscoring its efficacy in advancing temporal reasoning in LLMs. The code will be released at

* 17 pages, 10 figures 
Viaarxiv icon

Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation Extraction

Nov 15, 2023
Xilai Ma, Jing Li, Min Zhang

Few-shot relation extraction involves identifying the type of relationship between two specific entities within a text, using a limited number of annotated samples. A variety of solutions to this problem have emerged by applying meta-learning and neural graph techniques which typically necessitate a training process for adaptation. Recently, the strategy of in-context learning has been demonstrating notable results without the need of training. Few studies have already utilized in-context learning for zero-shot information extraction. Unfortunately, the evidence for inference is either not considered or implicitly modeled during the construction of chain-of-thought prompts. In this paper, we propose a novel approach for few-shot relation extraction using large language models, named CoT-ER, chain-of-thought with explicit evidence reasoning. In particular, CoT-ER first induces large language models to generate evidences using task-specific and concept-level knowledge. Then these evidences are explicitly incorporated into chain-of-thought prompting for relation extraction. Experimental results demonstrate that our CoT-ER approach (with 0% training data) achieves competitive performance compared to the fully-supervised (with 100% training data) state-of-the-art approach on the FewRel1.0 and FewRel2.0 datasets.

* An error example is in Table 14 on Page 18. Need to carefully correct and evaluate the error 
Viaarxiv icon