Abstract:Node importance estimation (NIE) in heterogeneous knowledge graphs is a critical yet challenging task, essential for applications such as recommendation, knowledge reasoning, and question answering. Existing methods often rely on pairwise connections, neglecting high-order dependencies among multiple entities and relations, and they treat structural and semantic signals independently, hindering effective cross-modal integration. To address these challenges, we propose MetaHGNIE, a meta-path induced hypergraph contrastive learning framework for disentangling and aligning structural and semantic information. MetaHGNIE constructs a higher-order knowledge graph via meta-path sequences, where typed hyperedges capture multi-entity relational contexts. Structural dependencies are aggregated with local attention, while semantic representations are encoded through a hypergraph transformer equipped with sparse chunking to reduce redundancy. Finally, a multimodal fusion module integrates structural and semantic embeddings under contrastive learning with auxiliary supervision, ensuring robust cross-modal alignment. Extensive experiments on benchmark NIE datasets demonstrate that MetaHGNIE consistently outperforms state-of-the-art baselines. These results highlight the effectiveness of explicitly modeling higher-order interactions and cross-modal alignment in heterogeneous knowledge graphs. Our code is available at https://github.com/SEU-WENJIA/DualHNIE
Abstract:Causal discovery aims to learn causal relationships between variables from targeted data, making it a fundamental task in machine learning. However, causal discovery algorithms often rely on unverifiable causal assumptions, which are usually difficult to satisfy in real-world data, thereby limiting the broad application of causal discovery in practical scenarios. Inspired by these considerations, this work extensively benchmarks the empirical performance of various mainstream causal discovery algorithms, which assume i.i.d. data, under eight model assumption violations. Our experimental results show that differentiable causal discovery methods exhibit robustness under the metrics of Structural Hamming Distance and Structural Intervention Distance of the inferred graphs in commonly used challenging scenarios, except for scale variation. We also provide the theoretical explanations for the performance of differentiable causal discovery methods. Finally, our work aims to comprehensively benchmark the performance of recent differentiable causal discovery methods under model assumption violations, and provide the standard for reasonable evaluation of causal discovery, as well as to further promote its application in real-world scenarios.