Abstract:Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.
Abstract:We introduce Blind Plug-and-Play Diffusion Models (Blind-PnPDM) as a novel framework for solving blind inverse problems where both the target image and the measurement operator are unknown. Unlike conventional methods that rely on explicit priors or separate parameter estimation, our approach performs posterior sampling by recasting the problem into an alternating Gaussian denoising scheme. We leverage two diffusion models as learned priors: one to capture the distribution of the target image and another to characterize the parameters of the measurement operator. This PnP integration of diffusion models ensures flexibility and ease of adaptation. Our experiments on blind image deblurring show that Blind-PnPDM outperforms state-of-the-art methods in terms of both quantitative metrics and visual fidelity. Our results highlight the effectiveness of treating blind inverse problems as a sequence of denoising subproblems while harnessing the expressive power of diffusion-based priors.
Abstract:Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
Abstract:Achieving generalization in neural approaches across different scales and distributions remains a significant challenge for the Traveling Salesman Problem~(TSP). A key obstacle is that neural networks often fail to learn robust principles for identifying universal patterns and deriving optimal solutions from diverse instances. In this paper, we first uncover Purity Law (PuLa), a fundamental structural principle for optimal TSP solutions, defining that edge prevalence grows exponentially with the sparsity of surrounding vertices. Statistically validated across diverse instances, PuLa reveals a consistent bias toward local sparsity in global optima. Building on this insight, we propose Purity Policy Optimization~(PUPO), a novel training paradigm that explicitly aligns characteristics of neural solutions with PuLa during the solution construction process to enhance generalization. Extensive experiments demonstrate that PUPO can be seamlessly integrated with popular neural solvers, significantly enhancing their generalization performance without incurring additional computational overhead during inference.
Abstract:This paper presents an overview of the NTIRE 2025 Image Denoising Challenge ({\sigma} = 50), highlighting the proposed methodologies and corresponding results. The primary objective is to develop a network architecture capable of achieving high-quality denoising performance, quantitatively evaluated using PSNR, without constraints on computational complexity or model size. The task assumes independent additive white Gaussian noise (AWGN) with a fixed noise level of 50. A total of 290 participants registered for the challenge, with 20 teams successfully submitting valid results, providing insights into the current state-of-the-art in image denoising.
Abstract:Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is the lack of robotic data, which are typically obtained through expensive on-robot operation. A promising remedy is to leverage cheaper, off-domain data such as action-free videos, hand-drawn sketches or simulation data. In this work, we posit that hierarchical vision-language-action (VLA) models can be more effective in utilizing off-domain data than standard monolithic VLA models that directly finetune vision-language models (VLMs) to predict actions. In particular, we study a class of hierarchical VLA models, where the high-level VLM is finetuned to produce a coarse 2D path indicating the desired robot end-effector trajectory given an RGB image and a task description. The intermediate 2D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Doing so alleviates the high-level VLM from fine-grained action prediction, while reducing the low-level policy's burden on complex task-level reasoning. We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios, including differences on embodiments, dynamics, visual appearances and task semantics, etc. In the real-robot experiments, we observe an average of 20% improvement in success rate across seven different axes of generalization over OpenVLA, representing a 50% relative gain. Visual results are provided at: https://hamster-robot.github.io/
Abstract:Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
Abstract:The advent of the Segment Anything Model (SAM) marks a significant milestone for interactive segmentation using generalist models. As a late fusion model, SAM extracts image embeddings once and merges them with prompts in later interactions. This strategy limits the models ability to extract detailed information from the prompted target zone. Current specialist models utilize the early fusion strategy that encodes the combination of images and prompts to target the prompted objects, yet repetitive complex computations on the images result in high latency. The key to these issues is efficiently synergizing the images and prompts. We propose SAM-REF, a two-stage refinement framework that fully integrates images and prompts globally and locally while maintaining the accuracy of early fusion and the efficiency of late fusion. The first-stage GlobalDiff Refiner is a lightweight early fusion network that combines the whole image and prompts, focusing on capturing detailed information for the entire object. The second-stage PatchDiff Refiner locates the object detail window according to the mask and prompts, then refines the local details of the object. Experimentally, we demonstrated the high effectiveness and efficiency of our method in tackling complex cases with multiple interactions. Our SAM-REF model outperforms the current state-of-the-art method in most metrics on segmentation quality without compromising efficiency.
Abstract:Accurate assessment of personality traits is crucial for effective psycho-counseling, yet traditional methods like self-report questionnaires are time-consuming and biased. This study exams whether Large Language Models (LLMs) can predict the Big Five personality traits directly from counseling dialogues and introduces an innovative framework to perform the task. Our framework applies role-play and questionnaire-based prompting to condition LLMs on counseling sessions, simulating client responses to the Big Five Inventory. We evaluated our framework on 853 real-world counseling sessions, finding a significant correlation between LLM-predicted and actual Big Five traits, proving the validity of framework. Moreover, ablation studies highlight the importance of role-play simulations and task simplification via questionnaires in enhancing prediction accuracy. Meanwhile, our fine-tuned Llama3-8B model, utilizing Direct Preference Optimization with Supervised Fine-Tuning, achieves a 130.95\% improvement, surpassing the state-of-the-art Qwen1.5-110B by 36.94\% in personality prediction validity. In conclusion, LLMs can predict personality based on counseling dialogues. Our code and model are publicly available at \url{https://github.com/kuri-leo/BigFive-LLM-Predictor}, providing a valuable tool for future research in computational psychometrics.
Abstract:Although recent generative image compression methods have demonstrated impressive potential in optimizing the rate-distortion-perception trade-off, they still face the critical challenge of flexible rate adaption to diverse compression necessities and scenarios. To overcome this challenge, this paper proposes a Controllable Generative Image Compression framework, Control-GIC, the first capable of fine-grained bitrate adaption across a broad spectrum while ensuring high-fidelity and generality compression. We base Control-GIC on a VQGAN framework representing an image as a sequence of variable-length codes (i.e. VQ-indices), which can be losslessly compressed and exhibits a direct positive correlation with the bitrates. Therefore, drawing inspiration from the classical coding principle, we naturally correlate the information density of local image patches with their granular representations, to achieve dynamic adjustment of the code quantity following different granularity decisions. This implies we can flexibly determine a proper allocation of granularity for the patches to acquire desirable compression rates. We further develop a probabilistic conditional decoder that can trace back to historic encoded multi-granularity representations according to transmitted codes, and then reconstruct hierarchical granular features in the formalization of conditional probability, enabling more informative aggregation to improve reconstruction realism. Our experiments show that Control-GIC allows highly flexible and controllable bitrate adaption and even once compression on an entire dataset to fulfill constrained bitrate conditions. Experimental results demonstrate its superior performance over recent state-of-the-art methods.