Abstract:Causal discovery aims to learn causal relationships between variables from targeted data, making it a fundamental task in machine learning. However, causal discovery algorithms often rely on unverifiable causal assumptions, which are usually difficult to satisfy in real-world data, thereby limiting the broad application of causal discovery in practical scenarios. Inspired by these considerations, this work extensively benchmarks the empirical performance of various mainstream causal discovery algorithms, which assume i.i.d. data, under eight model assumption violations. Our experimental results show that differentiable causal discovery methods exhibit robustness under the metrics of Structural Hamming Distance and Structural Intervention Distance of the inferred graphs in commonly used challenging scenarios, except for scale variation. We also provide the theoretical explanations for the performance of differentiable causal discovery methods. Finally, our work aims to comprehensively benchmark the performance of recent differentiable causal discovery methods under model assumption violations, and provide the standard for reasonable evaluation of causal discovery, as well as to further promote its application in real-world scenarios.
Abstract:Counterfactual thinking is a critical yet challenging topic for artificial intelligence to learn knowledge from data and ultimately improve their performances for new scenarios. Many research works, including Potential Outcome Model and Structural Causal Model, have been proposed to realize it. However, their modelings, theoretical foundations and application approaches are usually different. Moreover, there is a lack of graphical approach to infer spatio-temporal counterfactuals, that considers spatial and temporal interactions between multiple units. Thus, in this work, our aim is to investigate a survey to compare and discuss different counterfactual models, theories and approaches, and further build a unified graphical causal frameworks to infer the spatio-temporal counterfactuals.
Abstract:Identifying causality is a challenging task in many data-intensive scenarios. Many algorithms have been proposed for this critical task. However, most of them consider the learning algorithms for directed acyclic graph (DAG) of Bayesian network (BN). These BN-based models only have limited causal explainability because of the issue of Markov equivalence class. Moreover, they are dependent on the assumption of stationarity, whereas many sampling time series from complex system are nonstationary. The nonstationary time series bring dataset shift problem, which leads to the unsatisfactory performances of these algorithms. To fill these gaps, a novel causation model named Unique Causal Network (UCN) is proposed in this paper. Different from the previous BN-based models, UCN considers the influence of time delay, and proves the uniqueness of obtained network structure, which addresses the issue of Markov equivalence class. Furthermore, based on the decomposability property of UCN, a higher-order causal entropy (HCE) algorithm is designed to identify the structure of UCN in a distributed way. HCE algorithm measures the strength of causality by using nearest-neighbors entropy estimator, which works well on nonstationary time series. Finally, lots of experiments validate that HCE algorithm achieves state-of-the-art accuracy when time series are nonstationary, compared to the other baseline algorithms.