Department of Automation, Shanghai Jiao Tong University, Shanghai, China, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, China
Abstract:Despite the rapid progress of Large Language Models (LLMs), their application in agriculture remains limited due to the lack of domain-specific models, curated datasets, and robust evaluation frameworks. To address these challenges, we propose AgriGPT, a domain-specialized LLM ecosystem for agricultural usage. At its core, we design a multi-agent scalable data engine that systematically compiles credible data sources into Agri-342K, a high-quality, standardized question-answer (QA) dataset. Trained on this dataset, AgriGPT supports a broad range of agricultural stakeholders, from practitioners to policy-makers. To enhance factual grounding, we employ Tri-RAG, a three-channel Retrieval-Augmented Generation framework combining dense retrieval, sparse retrieval, and multi-hop knowledge graph reasoning, thereby improving the LLM's reasoning reliability. For comprehensive evaluation, we introduce AgriBench-13K, a benchmark suite comprising 13 tasks with varying types and complexities. Experiments demonstrate that AgriGPT significantly outperforms general-purpose LLMs on both domain adaptation and reasoning. Beyond the model itself, AgriGPT represents a modular and extensible LLM ecosystem for agriculture, comprising structured data construction, retrieval-enhanced generation, and domain-specific evaluation. This work provides a generalizable framework for developing scientific and industry-specialized LLMs. All models, datasets, and code will be released to empower agricultural communities, especially in underserved regions, and to promote open, impactful research.
Abstract:As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
Abstract:Internet live streaming is widely used in online entertainment and e-commerce, where live advertising is an important marketing tool for anchors. An advertising campaign hopes to maximize the effect (such as conversions) under constraints (such as budget and cost-per-click). The mainstream control of campaigns is auto-bidding, where the performance depends on the decision of the bidding algorithm in each request. The most widely used auto-bidding algorithms include Proportional-Integral-Derivative (PID) control, linear programming (LP), reinforcement learning (RL), etc. Existing methods either do not consider the entire time traffic, or have too high computational complexity. In this paper, the live advertising has high requirements for real-time bidding (second-level control) and faces the difficulty of unknown future traffic. Therefore, we propose a lightweight bidding algorithm Binary Constrained Bidding (BiCB), which neatly combines the optimal bidding formula given by mathematical analysis and the statistical method of future traffic estimation, and obtains good approximation to the optimal result through a low complexity solution. In addition, we complement the form of upper and lower bound constraints for traditional auto-bidding modeling and give theoretical analysis of BiCB. Sufficient offline and online experiments prove BiCB's good performance and low engineering cost.
Abstract:Combinatorial optimization algorithm is essential in computer-aided drug design by progressively exploring chemical space to design lead compounds with high affinity to target protein. However current methods face inherent challenges in integrating domain knowledge, limiting their performance in identifying lead compounds with novel and valid binding mode. Here, we propose AutoLeadDesign, a lead compounds design framework that inspires extensive domain knowledge encoded in large language models with chemical fragments to progressively implement efficient exploration of vast chemical space. The comprehensive experiments indicate that AutoLeadDesign outperforms baseline methods. Significantly, empirical lead design campaigns targeting two clinically relevant targets (PRMT5 and SARS-CoV-2 PLpro) demonstrate AutoLeadDesign's competence in de novo generation of lead compounds achieving expert-competitive design efficacy. Structural analysis further confirms their mechanism-validated inhibitory patterns. By tracing the process of design, we find that AutoLeadDesign shares analogous mechanisms with fragment-based drug design which traditionally rely on the expert decision-making, further revealing why it works. Overall, AutoLeadDesign offers an efficient approach for lead compounds design, suggesting its potential utility in drug design.
Abstract:The Internet of Vehicles (IoV) transforms the transportation ecosystem promising pervasive connectivity and data-driven approaches. Deep learning and generative Artificial Intelligence (AI) have the potential to significantly enhance the operation of applications within IoV by facilitating efficient decision-making and predictive capabilities, including intelligent navigation, vehicle safety monitoring, accident prevention, and intelligent traffic management. Nevertheless, efficiently transmitting and processing the massive volumes of data generated by the IoV in real-time remains a significant challenge, particularly in dynamic and unpredictable wireless channel conditions. To address these challenges, this paper proposes a semantic communication framework based on channel perception to improve the accuracy and efficiency of data transmission. The semantic communication model extracts and compresses the information to be transmitted. In addition, the wireless channel is estimated by using a generative diffusion model, which is employed to predict the dynamic channel states, thereby improving the quality of IoV service. In dynamic scenarios, however, the channel estimation performance may be degraded when substantially new scenarios take place, which will adversely affect user experience. To mitigate this limitation, we employ a large model to fine-tune the channel generation model to enhance its adaptability for varying scenarios. The performance and reliability of the proposed framework are evaluated on the two public datasets.
Abstract:We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
Abstract:We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
Abstract:In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.
Abstract:Psychological counseling faces huge challenges due to the growing demand for mental health services and the shortage of trained professionals. Large language models (LLMs) have shown potential to assist psychological counseling, especially in empathy and emotional support. However, existing models lack a deep understanding of emotions and are unable to generate personalized treatment plans based on fine-grained emotions. To address these shortcomings, we present AI PsyRoom, a multi-agent simulation framework designed to enhance psychological counseling by generating empathetic and emotionally nuanced conversations. By leveraging fine-grained emotion classification and a multi-agent framework, we construct a multi-agent PsyRoom A for dialogue reconstruction, generating a high-quality dialogue dataset EmoPsy, which contains 35 sub-emotions, 423 specific emotion scenarios, and 12,350 dialogues. We also propose PsyRoom B for generating personalized treatment plans. Quantitative evaluations demonstrate that AI PsyRoom significantly outperforms state-of-the-art methods, achieving 18% improvement in problem orientation, 23% in expression, 24% in Empathy, and 16% in interactive communication quality. The datasets and models are publicly available, providing a foundation for advancing AI-assisted psychological counseling research.
Abstract:In science, we are interested not only in forecasting but also in understanding how predictions are made, specifically what the interpretable underlying model looks like. Data-driven machine learning technology can significantly streamline the complex and time-consuming traditional manual process of discovering scientific laws, helping us gain insights into fundamental issues in modern science. In this work, we introduce a pre-trained symbolic foundation regressor that can effectively compress complex data with numerous interacting variables while producing interpretable physical representations. Our model has been rigorously tested on non-network symbolic regression, symbolic regression on complex networks, and the inference of network dynamics across various domains, including physics, biochemistry, ecology, and epidemiology. The results indicate a remarkable improvement in equation inference efficiency, being three times more effective than baseline approaches while maintaining accurate predictions. Furthermore, we apply our model to uncover more intuitive laws of interaction transmission from global epidemic outbreak data, achieving optimal data fitting. This model extends the application boundary of pre-trained symbolic regression models to complex networks, and we believe it provides a foundational solution for revealing the hidden mechanisms behind changes in complex phenomena, enhancing interpretability, and inspiring further scientific discoveries.