Fellow, IEEE
Abstract:Air pollution has emerged as a major public health challenge in megacities. Numerical simulations and single-site machine learning approaches have been widely applied in air quality forecasting tasks. However, these methods face multiple limitations, including high computational costs, low operational efficiency, and limited integration with observational data. With the rapid advancement of artificial intelligence, there is an urgent need to develop a low-cost, efficient air quality forecasting model for smart urban management. An air quality forecasting model, named FuXi-Air, has been constructed in this study based on multimodal data fusion to support high-precision air quality forecasting and operated in typical megacities. The model integrates meteorological forecasts, emission inventories, and pollutant monitoring data under the guidance of air pollution mechanism. By combining an autoregressive prediction framework with a frame interpolation strategy, the model successfully completes 72-hour forecasts for six major air pollutants at an hourly resolution across multiple monitoring sites within 25-30 seconds. In terms of both computational efficiency and forecasting accuracy, it outperforms the mainstream numerical air quality models in operational forecasting work. Ablation experiments concerning key influencing factors show that although meteorological data contribute more to model accuracy than emission inventories do, the integration of multimodal data significantly improves forecasting precision and ensures that reliable predictions are obtained under differing pollution mechanisms across megacities. This study provides both a technical reference and a practical example for applying multimodal data-driven models to air quality forecasting and offers new insights into building hybrid forecasting systems to support air pollution risk warning in smart city management.
Abstract:Unsupervised Camoflaged Object Detection (UCOD) has gained attention since it doesn't need to rely on extensive pixel-level labels. Existing UCOD methods typically generate pseudo-labels using fixed strategies and train 1 x1 convolutional layers as a simple decoder, leading to low performance compared to fully-supervised methods. We emphasize two drawbacks in these approaches: 1). The model is prone to fitting incorrect knowledge due to the pseudo-label containing substantial noise. 2). The simple decoder fails to capture and learn the semantic features of camouflaged objects, especially for small-sized objects, due to the low-resolution pseudo-labels and severe confusion between foreground and background pixels. To this end, we propose a UCOD method with a teacher-student framework via Dynamic Pseudo-label Learning called UCOD-DPL, which contains an Adaptive Pseudo-label Module (APM), a Dual-Branch Adversarial (DBA) decoder, and a Look-Twice mechanism. The APM module adaptively combines pseudo-labels generated by fixed strategies and the teacher model to prevent the model from overfitting incorrect knowledge while preserving the ability for self-correction; the DBA decoder takes adversarial learning of different segmentation objectives, guides the model to overcome the foreground-background confusion of camouflaged objects, and the Look-Twice mechanism mimics the human tendency to zoom in on camouflaged objects and performs secondary refinement on small-sized objects. Extensive experiments show that our method demonstrates outstanding performance, even surpassing some existing fully supervised methods. The code is available now.
Abstract:Large Multimodal Models (LMMs) have achieved impressive progress in visual perception and reasoning. However, when confronted with visually ambiguous or non-semantic scene text, they often struggle to accurately spot and understand the content, frequently generating semantically plausible yet visually incorrect answers, which we refer to as semantic hallucination. In this work, we investigate the underlying causes of semantic hallucination and identify a key finding: Transformer layers in LLM with stronger attention focus on scene text regions are less prone to producing semantic hallucinations. Thus, we propose a training-free semantic hallucination mitigation framework comprising two key components: (1) ZoomText, a coarse-to-fine strategy that identifies potential text regions without external detectors; and (2) Grounded Layer Correction, which adaptively leverages the internal representations from layers less prone to hallucination to guide decoding, correcting hallucinated outputs for non-semantic samples while preserving the semantics of meaningful ones. To enable rigorous evaluation, we introduce TextHalu-Bench, a benchmark of over 1,730 samples spanning both semantic and non-semantic cases, with manually curated question-answer pairs designed to probe model hallucinations. Extensive experiments demonstrate that our method not only effectively mitigates semantic hallucination but also achieves strong performance on public benchmarks for scene text spotting and understanding.
Abstract:Visual texts embedded in videos carry rich semantic information, which is crucial for both holistic video understanding and fine-grained reasoning about local human actions. However, existing video understanding benchmarks largely overlook textual information, while OCR-specific benchmarks are constrained to static images, limiting their ability to capture the interaction between text and dynamic visual contexts. To address this gap, we propose VidText, a new benchmark designed for comprehensive and in-depth evaluation of video text understanding. VidText offers the following key features: 1) It covers a wide range of real-world scenarios and supports multilingual content, encompassing diverse settings where video text naturally appears. 2) It introduces a hierarchical evaluation framework with video-level, clip-level, and instance-level tasks, enabling assessment of both global summarization and local retrieval capabilities. 3) The benchmark also introduces a set of paired perception reasoning tasks, ranging from visual text perception to cross-modal reasoning between textual and visual information. Extensive experiments on 18 state-of-the-art Large Multimodal Models (LMMs) reveal that current models struggle across most tasks, with significant room for improvement. Further analysis highlights the impact of both model-intrinsic factors, such as input resolution and OCR capability, and external factors, including the use of auxiliary information and Chain-of-Thought reasoning strategies. We hope VidText will fill the current gap in video understanding benchmarks and serve as a foundation for future research on multimodal reasoning with video text in dynamic environments.
Abstract:Multi-modal Large Language Models (MLLMs) excel at single-image tasks but struggle with multi-image understanding due to cross-modal misalignment, leading to hallucinations (context omission, conflation, and misinterpretation). Existing methods using Direct Preference Optimization (DPO) constrain optimization to a solitary image reference within the input sequence, neglecting holistic context modeling. We propose Context-to-Cue Direct Preference Optimization (CcDPO), a multi-level preference optimization framework that enhances per-image perception in multi-image settings by zooming into visual clues -- from sequential context to local details. It features: (i) Context-Level Optimization : Re-evaluates cognitive biases underlying MLLMs' multi-image context comprehension and integrates a spectrum of low-cost global sequence preferences for bias mitigation. (ii) Needle-Level Optimization : Directs attention to fine-grained visual details through region-targeted visual prompts and multimodal preference supervision. To support scalable optimization, we also construct MultiScope-42k, an automatically generated dataset with high-quality multi-level preference pairs. Experiments show that CcDPO significantly reduces hallucinations and yields consistent performance gains across general single- and multi-image tasks.
Abstract:Existing human motion generation methods with trajectory and pose inputs operate global processing on both modalities, leading to suboptimal outputs. In this paper, we propose IKMo, an image-keyframed motion generation method based on the diffusion model with trajectory and pose being decoupled. The trajectory and pose inputs go through a two-stage conditioning framework. In the first stage, the dedicated optimization module is applied to refine inputs. In the second stage, trajectory and pose are encoded via a Trajectory Encoder and a Pose Encoder in parallel. Then, motion with high spatial and semantic fidelity is guided by a motion ControlNet, which processes the fused trajectory and pose data. Experiment results based on HumanML3D and KIT-ML datasets demonstrate that the proposed method outperforms state-of-the-art on all metrics under trajectory-keyframe constraints. In addition, MLLM-based agents are implemented to pre-process model inputs. Given texts and keyframe images from users, the agents extract motion descriptions, keyframe poses, and trajectories as the optimized inputs into the motion generation model. We conducts a user study with 10 participants. The experiment results prove that the MLLM-based agents pre-processing makes generated motion more in line with users' expectation. We believe that the proposed method improves both the fidelity and controllability of motion generation by the diffusion model.
Abstract:Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMMR, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMMR comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMMR offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.
Abstract:Vehicular metaverses are an emerging paradigm that merges intelligent transportation systems with virtual spaces, leveraging advanced digital twin and Artificial Intelligence (AI) technologies to seamlessly integrate vehicles, users, and digital environments. In this paradigm, vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities, enabling real-time processing and analysis of multi-modal data to provide users with customized interactive services. Since vehicular AI agents require substantial resources for real-time decision-making, given vehicle mobility and network dynamics conditions, the AI agents are deployed in RoadSide Units (RSUs) with sufficient resources and dynamically migrated among them. However, AI agent migration requires frequent data exchanges, which may expose vehicular metaverses to potential cyber attacks. To this end, we propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling through cooperation between vehicles and RSUs. Additionally, we design a trust evaluation model based on the theory of planned behavior to dynamically quantify the reputation of RSUs, thereby better accommodating the personalized trust preferences of users. We then model the vehicular AI agent migration process as a partially observable markov decision process and develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions. Numerical results demonstrate that the CGDM algorithm significantly outperforms baseline methods in reducing system latency and enhancing robustness against cyber attacks.
Abstract:Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a reinforcement learning framework that incentivizes the search capabilities of LLMs without interacting with real search engines. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both relevant and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.
Abstract:Multivariate time series forecasting enables the prediction of future states by leveraging historical data, thereby facilitating decision-making processes. Each data node in a multivariate time series encompasses a sequence of multiple dimensions. These nodes exhibit interdependent relationships, forming a graph structure. While existing prediction methods often assume a fixed graph structure, many real-world scenarios involve dynamic graph structures. Moreover, interactions among time series observed at different time scales vary significantly. To enhance prediction accuracy by capturing precise temporal and spatial features, this paper introduces the Temporal Attention Evolutional Graph Convolutional Network (TAEGCN). This novel method not only integrates causal temporal convolution and a multi-head self-attention mechanism to learn temporal features of nodes, but also construct the dynamic graph structure based on these temporal features to keep the consistency of the changing in spatial feature with temporal series. TAEGCN adeptly captures temporal causal relationships and hidden spatial dependencies within the data. Furthermore, TAEGCN incorporates a unified neural network that seamlessly integrates these components to generate final predictions. Experimental results conducted on two public transportation network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of the proposed model.