Abstract:Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.
Abstract:Multi-task learning (MTL) has emerged as an imperative machine learning tool to solve multiple learning tasks simultaneously and has been successfully applied to healthcare, marketing, and biomedical fields. However, in order to borrow information across different tasks effectively, it is essential to utilize both homogeneous and heterogeneous information. Among the extensive literature on MTL, various forms of heterogeneity are presented in MTL problems, such as block-wise, distribution, and posterior heterogeneity. Existing methods, however, struggle to tackle these forms of heterogeneity simultaneously in a unified framework. In this paper, we propose a two-step learning strategy for MTL which addresses the aforementioned heterogeneity. First, we impute the missing blocks using shared representations extracted from homogeneous source across different tasks. Next, we disentangle the mappings between input features and responses into a shared component and a task-specific component, respectively, thereby enabling information borrowing through the shared component. Our numerical experiments and real-data analysis from the ADNI database demonstrate the superior MTL performance of the proposed method compared to other competing methods.
Abstract:Multi-task learning (MTL) has become an essential machine learning tool for addressing multiple learning tasks simultaneously and has been effectively applied across fields such as healthcare, marketing, and biomedical research. However, to enable efficient information sharing across tasks, it is crucial to leverage both shared and heterogeneous information. Despite extensive research on MTL, various forms of heterogeneity, including distribution and posterior heterogeneity, present significant challenges. Existing methods often fail to address these forms of heterogeneity within a unified framework. In this paper, we propose a dual-encoder framework to construct a heterogeneous latent factor space for each task, incorporating a task-shared encoder to capture common information across tasks and a task-specific encoder to preserve unique task characteristics. Additionally, we explore the intrinsic similarity structure of the coefficients corresponding to learned latent factors, allowing for adaptive integration across tasks to manage posterior heterogeneity. We introduce a unified algorithm that alternately learns the task-specific and task-shared encoders and coefficients. In theory, we investigate the excess risk bound for the proposed MTL method using local Rademacher complexity and apply it to a new but related task. Through simulation studies, we demonstrate that the proposed method outperforms existing data integration methods across various settings. Furthermore, the proposed method achieves superior predictive performance for time to tumor doubling across five distinct cancer types in PDX data.
Abstract:This paper introduces PreP-OCR, a two-stage pipeline that combines document image restoration with semantic-aware post-OCR correction to enhance both visual clarity and textual consistency, thereby improving text extraction from degraded historical documents. First, we synthesize document-image pairs from plaintext, rendering them with diverse fonts and layouts and then applying a randomly ordered set of degradation operations. An image restoration model is trained on this synthetic data, using multi-directional patch extraction and fusion to process large images. Second, a ByT5 post-OCR model, fine-tuned on synthetic historical text pairs, addresses remaining OCR errors. Detailed experiments on 13,831 pages of real historical documents in English, French, and Spanish show that the PreP-OCR pipeline reduces character error rates by 63.9-70.3% compared to OCR on raw images. Our pipeline demonstrates the potential of integrating image restoration with linguistic error correction for digitizing historical archives.
Abstract:Multimodal spiking neural networks (SNNs) hold significant potential for energy-efficient sensory processing but face critical challenges in modality imbalance and temporal misalignment. Current approaches suffer from uncoordinated convergence speeds across modalities and static fusion mechanisms that ignore time-varying cross-modal interactions. We propose the temporal attention-guided adaptive fusion framework for multimodal SNNs with two synergistic innovations: 1) The Temporal Attention-guided Adaptive Fusion (TAAF) module that dynamically assigns importance scores to fused spiking features at each timestep, enabling hierarchical integration of temporally heterogeneous spike-based features; 2) The temporal adaptive balanced fusion loss that modulates learning rates per modality based on the above attention scores, preventing dominant modalities from monopolizing optimization. The proposed framework implements adaptive fusion, especially in the temporal dimension, and alleviates the modality imbalance during multimodal learning, mimicking cortical multisensory integration principles. Evaluations on CREMA-D, AVE, and EAD datasets demonstrate state-of-the-art performance (77.55\%, 70.65\% and 97.5\%accuracy, respectively) with energy efficiency. The system resolves temporal misalignment through learnable time-warping operations and faster modality convergence coordination than baseline SNNs. This work establishes a new paradigm for temporally coherent multimodal learning in neuromorphic systems, bridging the gap between biological sensory processing and efficient machine intelligence.
Abstract:Deep neural networks (DNNs) excel in computer vision tasks, especially, few-shot learning (FSL), which is increasingly important for generalizing from limited examples. However, DNNs are computationally expensive with scalability issues in real world. Spiking Neural Networks (SNNs), with their event-driven nature and low energy consumption, are particularly efficient in processing sparse and dynamic data, though they still encounter difficulties in capturing complex spatiotemporal features and performing accurate cross-class comparisons. To further enhance the performance and efficiency of SNNs in few-shot learning, we propose a few-shot learning framework based on SNNs, which combines a self-feature extractor module and a cross-feature contrastive module to refine feature representation and reduce power consumption. We apply the combination of temporal efficient training loss and InfoNCE loss to optimize the temporal dynamics of spike trains and enhance the discriminative power. Experimental results show that the proposed FSL-SNN significantly improves the classification performance on the neuromorphic dataset N-Omniglot, and also achieves competitive performance to ANNs on static datasets such as CUB and miniImageNet with low power consumption.
Abstract:Event-based object detection has gained increasing attention due to its advantages such as high temporal resolution, wide dynamic range, and asynchronous address-event representation. Leveraging these advantages, Spiking Neural Networks (SNNs) have emerged as a promising approach, offering low energy consumption and rich spatiotemporal dynamics. To further enhance the performance of event-based object detection, this study proposes a novel hybrid spike vision Transformer (HsVT) model. The HsVT model integrates a spatial feature extraction module to capture local and global features, and a temporal feature extraction module to model time dependencies and long-term patterns in event sequences. This combination enables HsVT to capture spatiotemporal features, improving its capability to handle complex event-based object detection tasks. To support research in this area, we developed and publicly released The Fall Detection Dataset as a benchmark for event-based object detection tasks. This dataset, captured using an event-based camera, ensures facial privacy protection and reduces memory usage due to the event representation format. We evaluated the HsVT model on GEN1 and Fall Detection datasets across various model sizes. Experimental results demonstrate that HsVT achieves significant performance improvements in event detection with fewer parameters.
Abstract:Spiking Neural Networks (SNNs) are increasingly recognized for their biological plausibility and energy efficiency, positioning them as strong alternatives to Artificial Neural Networks (ANNs) in neuromorphic computing applications. SNNs inherently process temporal information by leveraging the precise timing of spikes, but balancing temporal feature utilization with low energy consumption remains a challenge. In this work, we introduce Temporal Shift module for Spiking Neural Networks (TS-SNN), which incorporates a novel Temporal Shift (TS) module to integrate past, present, and future spike features within a single timestep via a simple yet effective shift operation. A residual combination method prevents information loss by integrating shifted and original features. The TS module is lightweight, requiring only one additional learnable parameter, and can be seamlessly integrated into existing architectures with minimal additional computational cost. TS-SNN achieves state-of-the-art performance on benchmarks like CIFAR-10 (96.72\%), CIFAR-100 (80.28\%), and ImageNet (70.61\%) with fewer timesteps, while maintaining low energy consumption. This work marks a significant step forward in developing efficient and accurate SNN architectures.
Abstract:In the era of big data, large-scale, multi-modal datasets are increasingly ubiquitous, offering unprecedented opportunities for predictive modeling and scientific discovery. However, these datasets often exhibit complex heterogeneity, such as covariate shift, posterior drift, and missing modalities, that can hinder the accuracy of existing prediction algorithms. To address these challenges, we propose a novel Representation Retrieval ($R^2$) framework, which integrates a representation learning module (the representer) with a sparsity-induced machine learning model (the learner). Moreover, we introduce the notion of "integrativeness" for representers, characterized by the effective data sources used in learning representers, and propose a Selective Integration Penalty (SIP) to explicitly improve the property. Theoretically, we demonstrate that the $R^2$ framework relaxes the conventional full-sharing assumption in multi-task learning, allowing for partially shared structures, and that SIP can improve the convergence rate of the excess risk bound. Extensive simulation studies validate the empirical performance of our framework, and applications to two real-world datasets further confirm its superiority over existing approaches.
Abstract:Spiking Neural Networks (SNNs), inspired by the human brain, offer significant computational efficiency through discrete spike-based information transfer. Despite their potential to reduce inference energy consumption, a performance gap persists between SNNs and Artificial Neural Networks (ANNs), primarily due to current training methods and inherent model limitations. While recent research has aimed to enhance SNN learning by employing knowledge distillation (KD) from ANN teacher networks, traditional distillation techniques often overlook the distinctive spatiotemporal properties of SNNs, thus failing to fully leverage their advantages. To overcome these challenge, we propose a novel logit distillation method characterized by temporal separation and entropy regularization. This approach improves existing SNN distillation techniques by performing distillation learning on logits across different time steps, rather than merely on aggregated output features. Furthermore, the integration of entropy regularization stabilizes model optimization and further boosts the performance. Extensive experimental results indicate that our method surpasses prior SNN distillation strategies, whether based on logit distillation, feature distillation, or a combination of both. The code will be available on GitHub.