Abstract:Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
Abstract:This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.
Abstract:Jailbreak attacks, which aim to cause LLMs to perform unrestricted behaviors, have become a critical and challenging direction in AI safety. Despite achieving the promising attack success rate using dictionary-based evaluation, existing jailbreak attack methods fail to output detailed contents to satisfy the harmful request, leading to poor performance on GPT-based evaluation. To this end, we propose a black-box jailbreak attack termed GeneShift, by using a genetic algorithm to optimize the scenario shifts. Firstly, we observe that the malicious queries perform optimally under different scenario shifts. Based on it, we develop a genetic algorithm to evolve and select the hybrid of scenario shifts. It guides our method to elicit detailed and actionable harmful responses while keeping the seemingly benign facade, improving stealthiness. Extensive experiments demonstrate the superiority of GeneShift. Notably, GeneShift increases the jailbreak success rate from 0% to 60% when direct prompting alone would fail.
Abstract:Spatiotemporal Graph Learning (SGL) under Zero-Inflated Distribution (ZID) is crucial for urban risk management tasks, including crime prediction and traffic accident profiling. However, SGL models are vulnerable to adversarial attacks, compromising their practical utility. While adversarial training (AT) has been widely used to bolster model robustness, our study finds that traditional AT exacerbates performance disparities between majority and minority classes under ZID, potentially leading to irreparable losses due to underreporting critical risk events. In this paper, we first demonstrate the smaller top-k gradients and lower separability of minority class are key factors contributing to this disparity. To address these issues, we propose MinGRE, a framework for Minority Class Gradients and Representations Enhancement. MinGRE employs a multi-dimensional attention mechanism to reweight spatiotemporal gradients, minimizing the gradient distribution discrepancies across classes. Additionally, we introduce an uncertainty-guided contrastive loss to improve the inter-class separability and intra-class compactness of minority representations with higher uncertainty. Extensive experiments demonstrate that the MinGRE framework not only significantly reduces the performance disparity across classes but also achieves enhanced robustness compared to existing baselines. These findings underscore the potential of our method in fostering the development of more equitable and robust models.
Abstract:Human action recognition in low-light environments is crucial for various real-world applications. However, the existing approaches overlook the full utilization of brightness information throughout the training phase, leading to suboptimal performance. To address this limitation, we propose OwlSight, a biomimetic-inspired framework with whole-stage illumination enhancement to interact with action classification for accurate dark video human action recognition. Specifically, OwlSight incorporates a Time-Consistency Module (TCM) to capture shallow spatiotemporal features meanwhile maintaining temporal coherence, which are then processed by a Luminance Adaptation Module (LAM) to dynamically adjust the brightness based on the input luminance distribution. Furthermore, a Reflect Augmentation Module (RAM) is presented to maximize illumination utilization and simultaneously enhance action recognition via two interactive paths. Additionally, we build Dark-101, a large-scale dataset comprising 18,310 dark videos across 101 action categories, significantly surpassing existing datasets (e.g., ARID1.5 and Dark-48) in scale and diversity. Extensive experiments demonstrate that the proposed OwlSight achieves state-of-the-art performance across four low-light action recognition benchmarks. Notably, it outperforms previous best approaches by 5.36% on ARID1.5 and 1.72% on Dark-101, highlighting its effectiveness in challenging dark environments.
Abstract:Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in complex task-solving. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from performance and efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant field\footnote{https://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs}.
Abstract:The hallucination of large multimodal models (LMMs), providing responses that appear correct but are actually incorrect, limits their reliability and applicability. This paper aims to study the hallucination problem of LMMs in video modality, which is dynamic and more challenging compared to static modalities like images and text. From this motivation, we first present a comprehensive benchmark termed HAVEN for evaluating hallucinations of LMMs in video understanding tasks. It is built upon three dimensions, i.e., hallucination causes, hallucination aspects, and question formats, resulting in 6K questions. Then, we quantitatively study 7 influential factors on hallucinations, e.g., duration time of videos, model sizes, and model reasoning, via experiments of 16 LMMs on the presented benchmark. In addition, inspired by recent thinking models like OpenAI o1, we propose a video-thinking model to mitigate the hallucinations of LMMs via supervised reasoning fine-tuning (SRFT) and direct preference optimization (TDPO)-- where SRFT enhances reasoning capabilities while TDPO reduces hallucinations in the thinking process. Extensive experiments and analyses demonstrate the effectiveness. Remarkably, it improves the baseline by 7.65% in accuracy on hallucination evaluation and reduces the bias score by 4.5%. The code and data are public at https://github.com/Hongcheng-Gao/HAVEN.
Abstract:Existing foundation models, such as CLIP, aim to learn a unified embedding space for multimodal data, enabling a wide range of downstream web-based applications like search, recommendation, and content classification. However, these models often overlook the inherent graph structures in multimodal datasets, where entities and their relationships are crucial. Multimodal graphs (MMGs) represent such graphs where each node is associated with features from different modalities, while the edges capture the relationships between these entities. On the other hand, existing graph foundation models primarily focus on text-attributed graphs (TAGs) and are not designed to handle the complexities of MMGs. To address these limitations, we propose UniGraph2, a novel cross-domain graph foundation model that enables general representation learning on MMGs, providing a unified embedding space. UniGraph2 employs modality-specific encoders alongside a graph neural network (GNN) to learn a unified low-dimensional embedding space that captures both the multimodal information and the underlying graph structure. We propose a new cross-domain multi-graph pre-training algorithm at scale to ensure effective transfer learning across diverse graph domains and modalities. Additionally, we adopt a Mixture of Experts (MoE) component to align features from different domains and modalities, ensuring coherent and robust embeddings that unify the information across modalities. Extensive experiments on a variety of multimodal graph tasks demonstrate that UniGraph2 significantly outperforms state-of-the-art models in tasks such as representation learning, transfer learning, and multimodal generative tasks, offering a scalable and flexible solution for learning on MMGs.
Abstract:As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
Abstract:Zero-shot Text-To-Speech (TTS) synthesis shows great promise for personalized voice customization through voice cloning. However, current methods for achieving zero-shot TTS heavily rely on large model scales and extensive training datasets to ensure satisfactory performance and generalizability across various speakers. This raises concerns regarding both deployment costs and data security. In this paper, we present a lightweight and stable zero-shot TTS system. We introduce a novel TTS architecture designed to effectively model linguistic content and various speaker attributes from source speech and prompt speech, respectively. Furthermore, we present a two-stage self-distillation framework that constructs parallel data pairs for effectively disentangling linguistic content and speakers from the perspective of training data. Extensive experiments show that our system exhibits excellent performance and superior stability on the zero-shot TTS tasks. Moreover, it shows markedly superior computational efficiency, with RTFs of 0.13 and 0.012 on the CPU and GPU, respectively.