Abstract:We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
Abstract:Large Language Models (LLMs) demonstrate exceptional performance across various tasks but demand substantial computational resources even for fine-tuning computation. Although Low-Rank Adaptation (LoRA) significantly alleviates memory consumption during fine-tuning, its impact on computational cost reduction is limited. This paper identifies the computation of activation gradients as the primary bottleneck in LoRA's backward propagation and introduces the Computation-Efficient LoRA (CE-LoRA) algorithm, which enhances computational efficiency while preserving memory efficiency. CE-LoRA leverages two key techniques: Approximated Matrix Multiplication, which replaces dense multiplications of large and complete matrices with sparse multiplications involving only critical rows and columns, and the Double-LoRA technique, which reduces error propagation in activation gradients. Theoretically, CE-LoRA converges at the same rate as LoRA, $ \mathcal{O}(1/\sqrt{T}) $, where $T$ is the number of iteartions. Empirical evaluations confirm that CE-LoRA significantly reduces computational costs compared to LoRA without notable performance degradation.