Abstract:The growing complexity of both outdoor and indoor mobility systems demands scalable, cost-effective, and reliable perception and communication frameworks. This work presents the real-world deployment and evaluation of a Cloud Autonomous Mobility (CAM) system that leverages distributed sensor nodes connected via 5G networks, which integrates LiDAR- and camera-based perception at infrastructure units, cloud computing for global information fusion, and Ultra-Reliable Low Latency Communications (URLLC) to enable real-time situational awareness and autonomous operation. The CAM system is deployed in two distinct environments: a dense urban roundabout and a narrow indoor hospital corridor. Field experiments show improved traffic monitoring, hazard detection, and asset management capabilities. The paper also discusses practical deployment challenges and shares key insights for scaling CAM systems. The results highlight the potential of cloud-based infrastructure perception to advance both outdoor and indoor intelligent transportation systems.
Abstract:Human drivers naturally possess the ability to perceive driving scenarios, predict potential hazards, and react instinctively due to their spatial and causal intelligence, which allows them to perceive, understand, predict, and interact with the 3D world both spatially and temporally. Autonomous vehicles, however, lack these capabilities, leading to challenges in effectively managing perception-related Safety of the Intended Functionality (SOTIF) risks, particularly in complex and unpredictable driving conditions. To address this gap, we propose an approach that fine-tunes multimodal language models (MLLMs) on a customized dataset specifically designed to capture perception-related SOTIF scenarios. Model benchmarking demonstrates that this tailored dataset enables the models to better understand and respond to these complex driving situations. Additionally, in real-world case studies, the proposed method correctly handles challenging scenarios that even human drivers may find difficult. Real-time performance tests further indicate the potential for the models to operate efficiently in live driving environments. This approach, along with the dataset generation pipeline, shows significant promise for improving the identification, cognition, prediction, and reaction to SOTIF-related risks in autonomous driving systems. The dataset and information are available: https://github.com/s95huang/DriveSOTIF.git
Abstract:Autonomous driving systems must operate safely in human-populated indoor environments, where challenges such as limited perception and occlusion sensitivity arise when relying solely on onboard sensors. These factors generate difficulties in the accurate recognition of human intentions and the generation of comfortable, socially aware trajectories. To address these issues, we propose SAP-CoPE, a social-aware planning framework that integrates cooperative infrastructure with a novel 3D human pose estimation method and a model predictive control-based controller. This real-time framework formulates an optimization problem that accounts for uncertainty propagation in the camera projection matrix while ensuring human joint coherence. The proposed method is adaptable to single- or multi-camera configurations and can incorporate sparse LiDAR point-cloud data. To enhance safety and comfort in human environments, we integrate a human personal space field based on human pose into a model predictive controller, enabling the system to navigate while avoiding discomfort zones. Extensive evaluations in both simulated and real-world settings demonstrate the effectiveness of our approach in generating socially aware trajectories for autonomous systems.
Abstract:Distributionally robust optimization (DRO) is a powerful technique to train robust models against data distribution shift. This paper aims to solve regularized nonconvex DRO problems, where the uncertainty set is modeled by a so-called generalized Sinkhorn distance and the loss function is nonconvex and possibly unbounded. Such a distance allows to model uncertainty of distributions with different probability supports and divergence functions. For this class of regularized DRO problems, we derive a novel dual formulation taking the form of nested stochastic programming, where the dual variable depends on the data sample. To solve the dual problem, we provide theoretical evidence to design a nested stochastic gradient descent (SGD) algorithm, which leverages stochastic approximation to estimate the nested stochastic gradients. We study the convergence rate of nested SGD and establish polynomial iteration and sample complexities that are independent of the data size and parameter dimension, indicating its potential for solving large-scale DRO problems. We conduct numerical experiments to demonstrate the efficiency and robustness of the proposed algorithm.
Abstract:We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
Abstract:This paper presents a novel real-time, delay-aware cooperative perception system designed for intelligent mobility platforms operating in dynamic indoor environments. The system contains a network of multi-modal sensor nodes and a central node that collectively provide perception services to mobility platforms. The proposed Hierarchical Clustering Considering the Scanning Pattern and Ground Contacting Feature based Lidar Camera Fusion improve intra-node perception for crowded environment. The system also features delay-aware global perception to synchronize and aggregate data across nodes. To validate our approach, we introduced the Indoor Pedestrian Tracking dataset, compiled from data captured by two indoor sensor nodes. Our experiments, compared to baselines, demonstrate significant improvements in detection accuracy and robustness against delays. The dataset is available in the repository: https://github.com/NingMingHao/MVSLab-IndoorCooperativePerception
Abstract:This paper introduces a framework for an indoor autonomous mobility system that can perform patient transfers and materials handling. Unlike traditional systems that rely on onboard perception sensors, the proposed approach leverages a global perception and localization (PL) through Infrastructure Sensor Nodes (ISNs) and cloud computing technology. Using the global PL, an integrated Model Predictive Control (MPC)-based local planning and tracking controller augmented with Artificial Potential Field (APF) is developed, enabling reliable and efficient motion planning and obstacle avoidance ability while tracking predefined reference motions. Simulation results demonstrate the effectiveness of the proposed MPC controller in smoothly navigating around both static and dynamic obstacles. The proposed system has the potential to extend to intelligent connected autonomous vehicles, such as electric or cargo transport vehicles with four-wheel independent drive/steering (4WID-4WIS) configurations.
Abstract:Recent studies have shown that many nonconvex machine learning problems meet a so-called generalized-smooth condition that extends beyond traditional smooth nonconvex optimization. However, the existing algorithms designed for generalized-smooth nonconvex optimization encounter significant limitations in both their design and convergence analysis. In this work, we first study deterministic generalized-smooth nonconvex optimization and analyze the convergence of normalized gradient descent under the generalized Polyak-Lojasiewicz condition. Our results provide a comprehensive understanding of the interplay between gradient normalization and function geometry. Then, for stochastic generalized-smooth nonconvex optimization, we propose an independently-normalized stochastic gradient descent algorithm, which leverages independent sampling, gradient normalization and clipping to achieve an $\mathcal{O}(\epsilon^{-4})$ sample complexity under relaxed assumptions. Experiments demonstrate the fast convergence of our algorithm.
Abstract:The growing popularity of multi-channel wearable devices, such as smart glasses, has led to a surge of applications such as targeted speech recognition and enhanced hearing. However, current approaches to solve these tasks use independently trained models, which may not benefit from large amounts of unlabeled data. In this paper, we propose M-BEST-RQ, the first multi-channel speech foundation model for smart glasses, which is designed to leverage large-scale self-supervised learning (SSL) in an array-geometry agnostic approach. While prior work on multi-channel speech SSL only evaluated on simulated settings, we curate a suite of real downstream tasks to evaluate our model, namely (i) conversational automatic speech recognition (ASR), (ii) spherical active source localization, and (iii) glasses wearer voice activity detection, which are sourced from the MMCSG and EasyCom datasets. We show that a general-purpose M-BEST-RQ encoder is able to match or surpass supervised models across all tasks. For the conversational ASR task in particular, using only 8 hours of labeled speech, our model outperforms a supervised ASR baseline that is trained on 2000 hours of labeled data, which demonstrates the effectiveness of our approach.
Abstract:Edge vision systems combining sensing and embedded processing promise low-latency, decentralized, and energy-efficient solutions that forgo reliance on the cloud. As opposed to conventional frame-based vision sensors, event-based cameras deliver a microsecond-scale temporal resolution with sparse information encoding, thereby outlining new opportunities for edge vision systems. However, mainstream algorithms for frame-based vision, which mostly rely on convolutional neural networks (CNNs), can hardly exploit the advantages of event-based vision as they are typically optimized for dense matrix-vector multiplications. While event-driven graph neural networks (GNNs) have recently emerged as a promising solution for sparse event-based vision, their irregular structure is a challenge that currently hinders the design of efficient hardware accelerators. In this paper, we propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision with event-based cameras. It relies on three central ideas: (i) directed dynamic graphs exploiting single-hop nodes with edge-free storage, (ii) event queues for the efficient identification of local neighbors within a spatiotemporally decoupled search range, and (iii) a novel layer-parallel processing scheme enabling the low-latency execution of multi-layer GNNs. We deployed EvGNN on a Xilinx KV260 Ultrascale+ MPSoC platform and benchmarked it on the N-CARS dataset for car recognition, demonstrating a classification accuracy of 87.8% and an average latency per event of 16$\mu$s, thereby enabling real-time, microsecond-resolution event-based vision at the edge.