Abstract:Large Vision-Language Models (LVLMs) have exhibited remarkable progress. However, deficiencies remain compared to human intelligence, such as hallucination and shallow pattern matching. In this work, we aim to evaluate a fundamental yet underexplored intelligence: association, a cornerstone of human cognition for creative thinking and knowledge integration. Current benchmarks, often limited to closed-ended tasks, fail to capture the complexity of open-ended association reasoning vital for real-world applications. To address this, we present MM-OPERA, a systematic benchmark with 11,497 instances across two open-ended tasks: Remote-Item Association (RIA) and In-Context Association (ICA), aligning association intelligence evaluation with human psychometric principles. It challenges LVLMs to resemble the spirit of divergent thinking and convergent associative reasoning through free-form responses and explicit reasoning paths. We deploy tailored LLM-as-a-Judge strategies to evaluate open-ended outputs, applying process-reward-informed judgment to dissect reasoning with precision. Extensive empirical studies on state-of-the-art LVLMs, including sensitivity analysis of task instances, validity analysis of LLM-as-a-Judge strategies, and diversity analysis across abilities, domains, languages, cultures, etc., provide a comprehensive and nuanced understanding of the limitations of current LVLMs in associative reasoning, paving the way for more human-like and general-purpose AI. The dataset and code are available at https://github.com/MM-OPERA-Bench/MM-OPERA.
Abstract:Recent advancements in 2D and 3D generative models have expanded the capabilities of computer vision. However, generating high-quality 4D dynamic content from a single static image remains a significant challenge. Traditional methods have limitations in modeling temporal dependencies and accurately capturing dynamic geometry changes, especially when considering variations in camera perspective. To address this issue, we propose DynaPose4D, an innovative solution that integrates 4D Gaussian Splatting (4DGS) techniques with Category-Agnostic Pose Estimation (CAPE) technology. This framework uses 3D Gaussian Splatting to construct a 3D model from single images, then predicts multi-view pose keypoints based on one-shot support from a chosen view, leveraging supervisory signals to enhance motion consistency. Experimental results show that DynaPose4D achieves excellent coherence, consistency, and fluidity in dynamic motion generation. These findings not only validate the efficacy of the DynaPose4D framework but also indicate its potential applications in the domains of computer vision and animation production.
Abstract:Full fine-tuning of Large Language Models (LLMs) is notoriously memory-intensive, primarily because conventional optimizers such as SGD or Adam assume access to exact gradients derived from cached activations. Existing solutions either alter the model architecture (e.g., reversible networks) or trade memory for computation (e.g., activation checkpointing), but the optimizer itself remains untouched. In this work, we introduce GradLite, a backward-friendly optimizer that relaxes the requirement of exact gradients, enabling efficient training even when intermediate activations are aggressively discarded or approximated. GradLite leverages two key techniques: (i) low-rank Jacobian approximation, which reduces the dimensionality of backpropagated error signals, and (ii) error-feedback correction, which accumulates and compensates approximation errors across iterations to preserve convergence guarantees. We provide a theoretical analysis showing that GradLite maintains unbiased gradient estimates with bounded variance, ensuring convergence rates comparable to Adam. Empirically, GradLite reduces optimizer-state and activation memory consumption by up to 50\% without architectural changes, and achieves on-par or superior downstream performance on reasoning (MMLU, GSM8K), multilingual, and dialogue benchmarks compared to checkpointing and optimizer-centric baselines (LoMo, GaLore).
Abstract:With the growing adoption of wearable devices such as smart glasses for AI assistants, wearer speech recognition (WSR) is becoming increasingly critical to next-generation human-computer interfaces. However, in real environments, interference from side-talk speech remains a significant challenge to WSR and may cause accumulated errors for downstream tasks such as natural language processing. In this work, we introduce a novel multi-channel differential automatic speech recognition (ASR) method for robust WSR on smart glasses. The proposed system takes differential inputs from different frontends that complement each other to improve the robustness of WSR, including a beamformer, microphone selection, and a lightweight side-talk detection model. Evaluations on both simulated and real datasets demonstrate that the proposed system outperforms the traditional approach, achieving up to an 18.0% relative reduction in word error rate.
Abstract:Personalized text-to-image generation aims to synthesize novel images of a specific subject or style using only a few reference images. Recent methods based on Low-Rank Adaptation (LoRA) enable efficient single-concept customization by injecting lightweight, concept-specific adapters into pre-trained diffusion models. However, combining multiple LoRA modules for multi-concept generation often leads to identity missing and visual feature leakage. In this work, we identify two key issues behind these failures: (1) token-wise interference among different LoRA modules, and (2) spatial misalignment between the attention map of a rare token and its corresponding concept-specific region. To address these issues, we propose Token-Aware LoRA (TARA), which introduces a token mask to explicitly constrain each module to focus on its associated rare token to avoid interference, and a training objective that encourages the spatial attention of a rare token to align with its concept region. Our method enables training-free multi-concept composition by directly injecting multiple independently trained TARA modules at inference time. Experimental results demonstrate that TARA enables efficient multi-concept inference and effectively preserving the visual identity of each concept by avoiding mutual interference between LoRA modules. The code and models are available at https://github.com/YuqiPeng77/TARA.
Abstract:We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.
Abstract:We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
Abstract:The growing complexity of both outdoor and indoor mobility systems demands scalable, cost-effective, and reliable perception and communication frameworks. This work presents the real-world deployment and evaluation of a Cloud Autonomous Mobility (CAM) system that leverages distributed sensor nodes connected via 5G networks, which integrates LiDAR- and camera-based perception at infrastructure units, cloud computing for global information fusion, and Ultra-Reliable Low Latency Communications (URLLC) to enable real-time situational awareness and autonomous operation. The CAM system is deployed in two distinct environments: a dense urban roundabout and a narrow indoor hospital corridor. Field experiments show improved traffic monitoring, hazard detection, and asset management capabilities. The paper also discusses practical deployment challenges and shares key insights for scaling CAM systems. The results highlight the potential of cloud-based infrastructure perception to advance both outdoor and indoor intelligent transportation systems.
Abstract:Human drivers naturally possess the ability to perceive driving scenarios, predict potential hazards, and react instinctively due to their spatial and causal intelligence, which allows them to perceive, understand, predict, and interact with the 3D world both spatially and temporally. Autonomous vehicles, however, lack these capabilities, leading to challenges in effectively managing perception-related Safety of the Intended Functionality (SOTIF) risks, particularly in complex and unpredictable driving conditions. To address this gap, we propose an approach that fine-tunes multimodal language models (MLLMs) on a customized dataset specifically designed to capture perception-related SOTIF scenarios. Model benchmarking demonstrates that this tailored dataset enables the models to better understand and respond to these complex driving situations. Additionally, in real-world case studies, the proposed method correctly handles challenging scenarios that even human drivers may find difficult. Real-time performance tests further indicate the potential for the models to operate efficiently in live driving environments. This approach, along with the dataset generation pipeline, shows significant promise for improving the identification, cognition, prediction, and reaction to SOTIF-related risks in autonomous driving systems. The dataset and information are available: https://github.com/s95huang/DriveSOTIF.git




Abstract:Autonomous driving systems must operate safely in human-populated indoor environments, where challenges such as limited perception and occlusion sensitivity arise when relying solely on onboard sensors. These factors generate difficulties in the accurate recognition of human intentions and the generation of comfortable, socially aware trajectories. To address these issues, we propose SAP-CoPE, a social-aware planning framework that integrates cooperative infrastructure with a novel 3D human pose estimation method and a model predictive control-based controller. This real-time framework formulates an optimization problem that accounts for uncertainty propagation in the camera projection matrix while ensuring human joint coherence. The proposed method is adaptable to single- or multi-camera configurations and can incorporate sparse LiDAR point-cloud data. To enhance safety and comfort in human environments, we integrate a human personal space field based on human pose into a model predictive controller, enabling the system to navigate while avoiding discomfort zones. Extensive evaluations in both simulated and real-world settings demonstrate the effectiveness of our approach in generating socially aware trajectories for autonomous systems.