Fine-tuning pre-trained large language models in a parameter-efficient manner is widely studied for its effectiveness and efficiency. The popular method of low-rank adaptation (LoRA) offers a notable approach, hypothesizing that the adaptation process is intrinsically low-dimensional. Although LoRA has demonstrated commendable performance, it is implemented with a fixed and unalterable intrinsic rank that might not always be the ideal choice. Recognizing the need for more flexible adaptation, we extend the methodology of LoRA to an innovative approach we call sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. We achieve this through the incorporation of a gate unit optimized with proximal gradient method in the training stage, controlling the cardinality of rank under the sparsity of the gate. In the subsequent inference stage, we eliminate the parameter blocks corresponding to the zeroed-out ranks, to reduce each SoRA module back to a concise yet rank-optimal LoRA. Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters via updating in a sparse way. We further introduce a sparsifying scheduler for SoRA, aiming to examine the impact of the number of non-zero parameters on the model's memorization and generalization. Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
Zero-shot entity linking (EL) aims at aligning entity mentions to unseen entities to challenge the generalization ability. Previous methods largely focus on the candidate retrieval stage and ignore the essential candidate ranking stage, which disambiguates among entities and makes the final linking prediction. In this paper, we propose a read-and-select (ReS) framework by modeling the main components of entity disambiguation, i.e., mention-entity matching and cross-entity comparison. First, for each candidate, the reading module leverages mention context to output mention-aware entity representations, enabling mention-entity matching. Then, in the selecting module, we frame the choice of candidates as a sequence labeling problem, and all candidate representations are fused together to enable cross-entity comparison. Our method achieves the state-of-the-art performance on the established zero-shot EL dataset ZESHEL with a 2.55% micro-average accuracy gain, with no need for laborious multi-phase pre-training used in most of the previous work, showing the effectiveness of both mention-entity and cross-entity interaction.
Entity linking aims to link ambiguous mentions to their corresponding entities in a knowledge base. One of the key challenges comes from insufficient labeled data for specific domains. Although dense retrievers have achieved excellent performance on several benchmarks, their performance decreases significantly when only a limited amount of in-domain labeled data is available. In such few-shot setting, we revisit the sparse retrieval method, and propose an ELECTRA-based keyword extractor to denoise the mention context and construct a better query expression. For training the extractor, we propose a distant supervision method to automatically generate training data based on overlapping tokens between mention contexts and entity descriptions. Experimental results on the ZESHEL dataset demonstrate that the proposed method outperforms state-of-the-art models by a significant margin across all test domains, showing the effectiveness of keyword-enhanced sparse retrieval.
The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.
Nucleus image segmentation is a crucial step in the analysis, pathological diagnosis, and classification, which heavily relies on the quality of nucleus segmentation. However, the complexity of issues such as variations in nucleus size, blurred nucleus contours, uneven staining, cell clustering, and overlapping cells poses significant challenges. Current methods for nucleus segmentation primarily rely on nuclear morphology or contour-based approaches. Nuclear morphology-based methods exhibit limited generalization ability and struggle to effectively predict irregular-shaped nuclei, while contour-based extraction methods face challenges in accurately segmenting overlapping nuclei. To address the aforementioned issues, we propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation. The network simultaneously predicts target information and target contours. Additionally, we introduce a post-processing method that combines the target information and target contours to distinguish overlapping nuclei and generate an instance segmentation image. Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network. Extensive quantitative evaluations are conducted to assess the performance of our method. Experimental results demonstrate the superior performance of the proposed method compared to state-of-the-art approaches on the BNS, MoNuSeg, CoNSeg, and CPM-17 datasets.
Cervical cancer is one of the most severe diseases threatening women's health. Early detection and diagnosis can significantly reduce cancer risk, in which cervical cytology classification is indispensable. Researchers have recently designed many networks for automated cervical cancer diagnosis, but the limited accuracy and bulky size of these individual models cannot meet practical application needs. To address this issue, we propose a Voting-Stacking ensemble strategy, which employs three Inception networks as base learners and integrates their outputs through a voting ensemble. The samples misclassified by the ensemble model generate a new training set on which a linear classification model is trained as the meta-learner and performs the final predictions. In addition, a multi-level Stacking ensemble framework is designed to improve performance further. The method is evaluated on the SIPakMed, Herlev, and Mendeley datasets, achieving accuracies of 100%, 100%, and 100%, respectively. The experimental results outperform the current state-of-the-art (SOTA) methods, demonstrating its potential for reducing screening workload and helping pathologists detect cervical cancer.
Consistently scaling pre-trained language models (PLMs) imposes substantial burdens on model adaptation, necessitating more efficient alternatives to conventional fine-tuning. Given the advantage of prompting in the zero-shot setting and the observed performance fluctuation among different prompts, we explore the instance-level prompt and their generalizability. By searching through the prompt space, we first validate the assumption that for every instance, there is almost always a lottery prompt that induces the correct prediction from the PLM, and such prompt can be obtained at a low cost thanks to the inherent ability of PLMs. Meanwhile, we find that some strong lottery prompts have high performance over the whole training set, and they are equipped with distinguishable linguistic features. Lastly, we attempt to generalize the searched strong lottery prompts to unseen data with prompt ensembling method without any parameter tuning. Experiments are conducted on various types of NLP classification tasks and demonstrate that the proposed method can achieve comparable results with other gradient-free and optimization-free baselines.