Abstract:In the era of flourishing large-scale models, the challenge of selecting and optimizing datasets from the vast and complex sea of data, to enhance the performance of large language models within the constraints of limited computational resources, has become paramount. This paper details our solution for the BetterMixture challenge, which focuses on the fine-tuning data mixing for large language models. Our approach, which secured third place, incorporates data deduplication, low-level and high-level quality filtering, and diversity selection. The foundation of our solution is Ke-Data-Juicer, an extension of Data-Juicer, demonstrating its robust capabilities in handling and optimizing data for large language models.
Abstract:This paper presents the development and evaluation of ChatHome, a domain-specific language model (DSLM) designed for the intricate field of home renovation. Considering the proven competencies of large language models (LLMs) like GPT-4 and the escalating fascination with home renovation, this study endeavors to reconcile these aspects by generating a dedicated model that can yield high-fidelity, precise outputs relevant to the home renovation arena. ChatHome's novelty rests on its methodology, fusing domain-adaptive pretraining and instruction-tuning over an extensive dataset. This dataset includes professional articles, standard documents, and web content pertinent to home renovation. This dual-pronged strategy is designed to ensure that our model can assimilate comprehensive domain knowledge and effectively address user inquiries. Via thorough experimentation on diverse datasets, both universal and domain-specific, including the freshly introduced "EvalHome" domain dataset, we substantiate that ChatHome not only amplifies domain-specific functionalities but also preserves its versatility.
Abstract:This paper presents the details of our system designed for the Task 1 of Multimodal Information Based Speech Processing (MISP) Challenge 2021. The purpose of Task 1 is to leverage both audio and video information to improve the environmental robustness of far-field wake word spotting. In the proposed system, firstly, we take advantage of speech enhancement algorithms such as beamforming and weighted prediction error (WPE) to address the multi-microphone conversational audio. Secondly, several data augmentation techniques are applied to simulate a more realistic far-field scenario. For the video information, the provided region of interest (ROI) is used to obtain visual representation. Then the multi-layer CNN is proposed to learn audio and visual representations, and these representations are fed into our two-branch attention-based network which can be employed for fusion, such as transformer and conformed. The focal loss is used to fine-tune the model and improve the performance significantly. Finally, multiple trained models are integrated by casting vote to achieve our final 0.091 score.
Abstract:This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika.
Abstract:End-to-end models have gradually become the preferred option for automatic speech recognition (ASR) applications. During the training of end-to-end ASR, data augmentation is a quite effective technique for regularizing the neural networks. This paper proposes a novel data augmentation technique based on semantic transposition of the transcriptions via syntax rules for end-to-end Mandarin ASR. Specifically, we first segment the transcriptions based on part-of-speech tags. Then transposition strategies, such as placing the object in front of the subject or swapping the subject and the object, are applied on the segmented sentences. Finally, the acoustic features corresponding to the transposed transcription are reassembled based on the audio-to-text forced-alignment produced by a pre-trained ASR system. The combination of original data and augmented one is used for training a new ASR system. The experiments are conducted on the Transformer[2] and Conformer[3] based ASR. The results show that the proposed method can give consistent performance gain to the system. Augmentation related issues, such as comparison of different strategies and ratios for data combination are also investigated.
Abstract:Code-switching speech recognition has attracted an increasing interest recently, but the need for expert linguistic knowledge has always been a big issue. End-to-end automatic speech recognition (ASR) simplifies the building of ASR systems considerably by predicting graphemes or characters directly from acoustic input. In the mean time, the need of expert linguistic knowledge is also eliminated, which makes it an attractive choice for code-switching ASR. This paper presents a hybrid CTC-Attention based end-to-end Mandarin-English code-switching (CS) speech recognition system and studies the effect of hybrid CTC-Attention based models, different modeling units, the inclusion of language identification and different decoding strategies on the task of code-switching ASR. On the SEAME corpus, our system achieves a mixed error rate (MER) of 34.24%.
Abstract:End-To-End speech recognition have become increasingly popular in mandarin speech recognition and achieved delightful performance. Mandarin is a tonal language which is different from English and requires special treatment for the acoustic modeling units. There have been several different kinds of modeling units for mandarin such as phoneme, syllable and Chinese character. In this work, we explore two major end-to-end models: connectionist temporal classification (CTC) model and attention based encoder-decoder model for mandarin speech recognition. We compare the performance of three different scaled modeling units: context dependent phoneme(CDP), syllable with tone and Chinese character. We find that all types of modeling units can achieve approximate character error rate (CER) in CTC model and the performance of Chinese character attention model is better than syllable attention model. Furthermore, we find that Chinese character is a reasonable unit for mandarin speech recognition. On DidiCallcenter task, Chinese character attention model achieves a CER of 5.68% and CTC model gets a CER of 7.29%, on the other DidiReading task, CER are 4.89% and 5.79%, respectively. Moreover, attention model achieves a better performance than CTC model on both datasets.