Abstract:Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
Abstract:Despite recent advances in Large Language Models (LLMs) for code generation, the quality of LLM-generated code still faces significant challenges. One significant issue is code repetition, which refers to the model's tendency to generate structurally redundant code, resulting in inefficiencies and reduced readability. To address this, we conduct the first empirical study to investigate the prevalence and nature of repetition across 19 state-of-the-art code LLMs using three widely-used benchmarks. Our study includes both quantitative and qualitative analyses, revealing that repetition is pervasive and manifests at various granularities and extents, including character, statement, and block levels. We further summarize a taxonomy of 20 repetition patterns. Building on our findings, we propose DeRep, a rule-based technique designed to detect and mitigate repetition in generated code. We evaluate DeRep using both open-source benchmarks and in an industrial setting. Our results demonstrate that DeRep significantly outperforms baselines in reducing repetition (with an average improvements of 91.3%, 93.5%, and 79.9% in rep-3, rep-line, and sim-line metrics) and enhancing code quality (with a Pass@1 increase of 208.3% over greedy search). Furthermore, integrating DeRep improves the performance of existing repetition mitigation methods, with Pass@1 improvements ranging from 53.7% to 215.7%.
Abstract:The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
Abstract:Urban computing has emerged as a multidisciplinary field that harnesses data-driven technologies to address challenges and improve urban living. Traditional approaches, while beneficial, often face challenges with generalization, scalability, and contextual understanding. The advent of Large Language Models (LLMs) offers transformative potential in this domain. This survey explores the intersection of LLMs and urban computing, emphasizing the impact of LLMs in processing and analyzing urban data, enhancing decision-making, and fostering citizen engagement. We provide a concise overview of the evolution and core technologies of LLMs. Additionally, we survey their applications across key urban domains, such as transportation, public safety, and environmental monitoring, summarizing essential tasks and prior works in various urban contexts, while highlighting LLMs' functional roles and implementation patterns. Building on this, we propose potential LLM-based solutions to address unresolved challenges. To facilitate in-depth research, we compile a list of available datasets and tools applicable to diverse urban scenarios. Finally, we discuss the limitations of current approaches and outline future directions for advancing LLMs in urban computing.
Abstract:The integration of pathologic images and genomic data for survival analysis has gained increasing attention with advances in multimodal learning. However, current methods often ignore biological characteristics, such as heterogeneity and sparsity, both within and across modalities, ultimately limiting their adaptability to clinical practice. To address these challenges, we propose AdaMHF: Adaptive Multimodal Hierarchical Fusion, a framework designed for efficient, comprehensive, and tailored feature extraction and fusion. AdaMHF is specifically adapted to the uniqueness of medical data, enabling accurate predictions with minimal resource consumption, even under challenging scenarios with missing modalities. Initially, AdaMHF employs an experts expansion and residual structure to activate specialized experts for extracting heterogeneous and sparse features. Extracted tokens undergo refinement via selection and aggregation, reducing the weight of non-dominant features while preserving comprehensive information. Subsequently, the encoded features are hierarchically fused, allowing multi-grained interactions across modalities to be captured. Furthermore, we introduce a survival prediction benchmark designed to resolve scenarios with missing modalities, mirroring real-world clinical conditions. Extensive experiments on TCGA datasets demonstrate that AdaMHF surpasses current state-of-the-art (SOTA) methods, showcasing exceptional performance in both complete and incomplete modality settings.
Abstract:Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.
Abstract:Multi-view diabetic retinopathy (DR) detection has recently emerged as a promising method to address the issue of incomplete lesions faced by single-view DR. However, it is still challenging due to the variable sizes and scattered locations of lesions. Furthermore, existing multi-view DR methods typically merge multiple views without considering the correlations and redundancies of lesion information across them. Therefore, we propose a novel method to overcome the challenges of difficult lesion information learning and inadequate multi-view fusion. Specifically, we introduce a two-branch network to obtain both local lesion features and their global dependencies. The high-frequency component of the wavelet transform is used to exploit lesion edge information, which is then enhanced by global semantic to facilitate difficult lesion learning. Additionally, we present a cross-view fusion module to improve multi-view fusion and reduce redundancy. Experimental results on large public datasets demonstrate the effectiveness of our method. The code is open sourced on https://github.com/HuYongting/WGLIN.
Abstract:Large language model (LLM) agents typically adopt a step-by-step reasoning framework, in which they interleave the processes of thinking and acting to accomplish the given task. However, this paradigm faces a deep-rooted one-pass issue whereby each generated intermediate thought is plugged into the trajectory regardless of its correctness, which can cause irreversible error propagation. To address the issue, this paper proposes a novel framework called Generator-Assistant Stepwise Rollback (GA-Rollback) to induce better decision-making for LLM agents. Particularly, GA-Rollback utilizes a generator to interact with the environment and an assistant to examine each action produced by the generator, where the assistant triggers a rollback operation upon detection of incorrect actions. Moreover, we introduce two additional strategies tailored for the rollback scenario to further improve its effectiveness. Extensive experiments show that GA-Rollback achieves significant improvements over several strong baselines on three widely used benchmarks. Our analysis further reveals that GA-Rollback can function as a robust plug-and-play module, integrating seamlessly with other methods.
Abstract:Grammatical error classification plays a crucial role in language learning systems, but existing classification taxonomies often lack rigorous validation, leading to inconsistencies and unreliable feedback. In this paper, we revisit previous classification taxonomies for grammatical errors by introducing a systematic and qualitative evaluation framework. Our approach examines four aspects of a taxonomy, i.e., exclusivity, coverage, balance, and usability. Then, we construct a high-quality grammatical error classification dataset annotated with multiple classification taxonomies and evaluate them grounding on our proposed evaluation framework. Our experiments reveal the drawbacks of existing taxonomies. Our contributions aim to improve the precision and effectiveness of error analysis, providing more understandable and actionable feedback for language learners.
Abstract:For modern recommender systems, the use of low-dimensional latent representations to embed users and items based on their observed interactions has become commonplace. However, many existing recommendation models are primarily designed for coarse-grained and homogeneous interactions, which limits their effectiveness in two critical dimensions. Firstly, these models fail to leverage the relational dependencies that exist across different types of user behaviors, such as page views, collects, comments, and purchases. Secondly, they struggle to capture the fine-grained latent factors that drive user interaction patterns. To address these limitations, we present a heterogeneous graph collaborative filtering model MixRec that excels at disentangling users' multi-behavior interaction patterns and uncovering the latent intent factors behind each behavior. Our model achieves this by incorporating intent disentanglement and multi-behavior modeling, facilitated by a parameterized heterogeneous hypergraph architecture. Furthermore, we introduce a novel contrastive learning paradigm that adaptively explores the advantages of self-supervised data augmentation, thereby enhancing the model's resilience against data sparsity and expressiveness with relation heterogeneity. To validate the efficacy of MixRec, we conducted extensive experiments on three public datasets. The results clearly demonstrate its superior performance, significantly outperforming various state-of-the-art baselines. Our model is open-sourced and available at: https://github.com/HKUDS/MixRec.