Huazhong University of Science and Technology, Wuhan, China
Abstract:Open-set few-shot hyperspectral image (HSI) classification aims to classify image pixels by using few labeled pixels per class, where the pixels to be classified may be not all from the classes that have been seen. To address the open-set HSI classification challenge, current methods focus mainly on distinguishing the unknown class samples from the known class samples and rejecting them to increase the accuracy of identifying known class samples. They fails to further identify or discovery the unknow classes among the samples. This paper proposes a prototype learning and clustering method for discoverying unknown classes in HSIs under the few-shot environment. Using few labeled samples, it strives to develop the ability of infering the prototypes of unknown classes while distinguishing unknown classes from known classes. Once the unknown class samples are rejected by the learned known class classifier, the proposed method can further cluster the unknown class samples into different classes according to their distance to the inferred unknown class prototypes. Compared to existing state-of-the-art methods, extensive experiments on four benchmark HSI datasets demonstrate that our proposed method exhibits competitive performance in open-set few-shot HSI classification tasks. All the codes are available at \href{https://github.com/KOBEN-ff/OpenFUCD-main} {https://github.com/KOBEN-ff/OpenFUCD-main}
Abstract:We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
Abstract:Accurate demand forecasting is critical for supply chain optimization, yet remains difficult in practice due to hierarchical complexity, domain shifts, and evolving external factors. While recent foundation models offer strong potential for time series forecasting, they often suffer from architectural rigidity and limited robustness under distributional change. In this paper, we propose a unified ensemble framework that enhances the performance of foundation models for sales forecasting in real-world supply chains. Our method combines two complementary strategies: (1) Hierarchical Ensemble (HE), which partitions training and inference by semantic levels (e.g., store, category, department) to capture localized patterns; and (2) Architectural Ensemble (AE), which integrates predictions from diverse model backbones to mitigate bias and improve stability. We conduct extensive experiments on the M5 benchmark and three external sales datasets, covering both in-domain and zero-shot forecasting. Results show that our approach consistently outperforms strong baselines, improves accuracy across hierarchical levels, and provides a simple yet effective mechanism for boosting generalization in complex forecasting environments.
Abstract:Harnessing Large Language Models (LLMs) for recommendation systems has emerged as a prominent avenue, drawing substantial research interest. However, existing approaches primarily involve basic prompt techniques for knowledge acquisition, which resemble System-1 thinking. This makes these methods highly sensitive to errors in the reasoning path, where even a small mistake can lead to an incorrect inference. To this end, in this paper, we propose $R^{4}$ec, a reasoning, reflection and refinement framework that evolves the recommendation system into a weak System-2 model. Specifically, we introduce two models: an actor model that engages in reasoning, and a reflection model that judges these responses and provides valuable feedback. Then the actor model will refine its response based on the feedback, ultimately leading to improved responses. We employ an iterative reflection and refinement process, enabling LLMs to facilitate slow and deliberate System-2-like thinking. Ultimately, the final refined knowledge will be incorporated into a recommendation backbone for prediction. We conduct extensive experiments on Amazon-Book and MovieLens-1M datasets to demonstrate the superiority of $R^{4}$ec. We also deploy $R^{4}$ec on a large scale online advertising platform, showing 2.2\% increase of revenue. Furthermore, we investigate the scaling properties of the actor model and reflection model.
Abstract:Despite significant advancements in adapting Large Language Models (LLMs) for radiology report generation (RRG), clinical adoption remains challenging due to difficulties in accurately mapping pathological and anatomical features to their corresponding text descriptions. Additionally, semantic agnostic feature extraction further hampers the generation of accurate diagnostic reports. To address these challenges, we introduce Medical Concept Aligned Radiology Report Generation (MCA-RG), a knowledge-driven framework that explicitly aligns visual features with distinct medical concepts to enhance the report generation process. MCA-RG utilizes two curated concept banks: a pathology bank containing lesion-related knowledge, and an anatomy bank with anatomical descriptions. The visual features are aligned with these medical concepts and undergo tailored enhancement. We further propose an anatomy-based contrastive learning procedure to improve the generalization of anatomical features, coupled with a matching loss for pathological features to prioritize clinically relevant regions. Additionally, a feature gating mechanism is employed to filter out low-quality concept features. Finally, the visual features are corresponding to individual medical concepts, and are leveraged to guide the report generation process. Experiments on two public benchmarks (MIMIC-CXR and CheXpert Plus) demonstrate that MCA-RG achieves superior performance, highlighting its effectiveness in radiology report generation.
Abstract:Accurate prognosis of non-small cell lung cancer (NSCLC) patients undergoing immunotherapy is essential for personalized treatment planning, enabling informed patient decisions, and improving both treatment outcomes and quality of life. However, the lack of large, relevant datasets and effective multi-modal feature fusion strategies pose significant challenges in this domain. To address these challenges, we present a large-scale dataset and introduce a novel framework for multi-modal feature fusion aimed at enhancing the accuracy of survival prediction. The dataset comprises 3D CT images and corresponding clinical records from NSCLC patients treated with immune checkpoint inhibitors (ICI), along with progression-free survival (PFS) and overall survival (OS) data. We further propose a cross-modality masked learning approach for medical feature fusion, consisting of two distinct branches, each tailored to its respective modality: a Slice-Depth Transformer for extracting 3D features from CT images and a graph-based Transformer for learning node features and relationships among clinical variables in tabular data. The fusion process is guided by a masked modality learning strategy, wherein the model utilizes the intact modality to reconstruct missing components. This mechanism improves the integration of modality-specific features, fostering more effective inter-modality relationships and feature interactions. Our approach demonstrates superior performance in multi-modal integration for NSCLC survival prediction, surpassing existing methods and setting a new benchmark for prognostic models in this context.
Abstract:Social media popularity prediction plays a crucial role in content optimization, marketing strategies, and user engagement enhancement across digital platforms. However, predicting post popularity remains challenging due to the complex interplay between visual, textual, temporal, and user behavioral factors. This paper presents HyperFusion, a hierarchical multimodal ensemble learning framework for social media popularity prediction. Our approach employs a three-tier fusion architecture that progressively integrates features across abstraction levels: visual representations from CLIP encoders, textual embeddings from transformer models, and temporal-spatial metadata with user characteristics. The framework implements a hierarchical ensemble strategy combining CatBoost, TabNet, and custom multi-layer perceptrons. To address limited labeled data, we propose a two-stage training methodology with pseudo-labeling and iterative refinement. We introduce novel cross-modal similarity measures and hierarchical clustering features that capture inter-modal dependencies. Experimental results demonstrate that HyperFusion achieves competitive performance on the SMP challenge dataset. Our team achieved third place in the SMP Challenge 2025 (Image Track). The source code is available at https://anonymous.4open.science/r/SMPDImage.
Abstract:Social media platforms serve as central hubs for content dissemination, opinion expression, and public engagement across diverse modalities. Accurately predicting the popularity of social media videos enables valuable applications in content recommendation, trend detection, and audience engagement. In this paper, we present Multimodal Video Predictor (MVP), our winning solution to the Video Track of the SMP Challenge 2025. MVP constructs expressive post representations by integrating deep video features extracted from pretrained models with user metadata and contextual information. The framework applies systematic preprocessing techniques, including log-transformations and outlier removal, to improve model robustness. A gradient-boosted regression model is trained to capture complex patterns across modalities. Our approach ranked first in the official evaluation of the Video Track, demonstrating its effectiveness and reliability for multimodal video popularity prediction on social platforms. The source code is available at https://anonymous.4open.science/r/SMPDVideo.
Abstract:Large-scale scientific collaborations like ATLAS, Belle II, CMS, DUNE, and others involve hundreds of research institutes and thousands of researchers spread across the globe. These experiments generate petabytes of data, with volumes soon expected to reach exabytes. Consequently, there is a growing need for computation, including structured data processing from raw data to consumer-ready derived data, extensive Monte Carlo simulation campaigns, and a wide range of end-user analysis. To manage these computational and storage demands, centralized workflow and data management systems are implemented. However, decisions regarding data placement and payload allocation are often made disjointly and via heuristic means. A significant obstacle in adopting more effective heuristic or AI-driven solutions is the absence of a quick and reliable introspective dynamic model to evaluate and refine alternative approaches. In this study, we aim to develop such an interactive system using real-world data. By examining job execution records from the PanDA workflow management system, we have pinpointed key performance indicators such as queuing time, error rate, and the extent of remote data access. The dataset includes five months of activity. Additionally, we are creating a generative AI model to simulate time series of payloads, which incorporate visible features like category, event count, and submitting group, as well as hidden features like the total computational load-derived from existing PanDA records and computing site capabilities. These hidden features, which are not visible to job allocators, whether heuristic or AI-driven, influence factors such as queuing times and data movement.
Abstract:Deep Learning Systems (DLSs) are increasingly deployed in real-time applications, including those in resourceconstrained environments such as mobile and IoT devices. To address efficiency challenges, Dynamic Deep Learning Systems (DDLSs) adapt inference computation based on input complexity, reducing overhead. While this dynamic behavior improves efficiency, such behavior introduces new attack surfaces. In particular, efficiency adversarial attacks exploit these dynamic mechanisms to degrade system performance. This paper systematically explores efficiency robustness of DDLSs, presenting the first comprehensive taxonomy of efficiency attacks. We categorize these attacks based on three dynamic behaviors: (i) attacks on dynamic computations per inference, (ii) attacks on dynamic inference iterations, and (iii) attacks on dynamic output production for downstream tasks. Through an in-depth evaluation, we analyze adversarial strategies that target DDLSs efficiency and identify key challenges in securing these systems. In addition, we investigate existing defense mechanisms, demonstrating their limitations against increasingly popular efficiency attacks and the necessity for novel mitigation strategies to secure future adaptive DDLSs.