UC Davis
Abstract:Scientific discovery is a cumulative process and requires new ideas to be situated within an ever-expanding landscape of existing knowledge. An emerging and critical challenge is how to identify conceptually relevant prior work from rapidly growing literature, and assess how a new idea differentiates from existing research. Current embedding approaches typically conflate distinct conceptual aspects into single representations and cannot support fine-grained literature retrieval; meanwhile, LLM-based evaluators are subject to sycophancy biases, failing to provide discriminative novelty assessment. To tackle these challenges, we introduce the Ideation Space, a structured representation that decomposes scientific knowledge into three distinct dimensions, i.e., research problem, methodology, and core findings, each learned through contrastive training. This framework enables principled measurement of conceptual distance between ideas, and modeling of ideation transitions that capture the logical connections within a proposed idea. Building upon this representation, we propose a Hierarchical Sub-Space Retrieval framework for efficient, targeted literature retrieval, and a Decomposed Novelty Assessment algorithm that identifies which aspects of an idea are novel. Extensive experiments demonstrate substantial improvements, where our approach achieves Recall@30 of 0.329 (16.7% over baselines), our ideation transition retrieval reaches Hit Rate@30 of 0.643, and novelty assessment attains 0.37 correlation with expert judgments. In summary, our work provides a promising paradigm for future research on accelerating and evaluating scientific discovery.
Abstract:Real-world design documents (e.g., posters) are inherently multi-layered, combining decoration, text, and images. Editing them from natural-language instructions requires fine-grained, layer-aware reasoning to identify relevant layers and coordinate modifications. Prior work largely overlooks multi-layer design document editing, focusing instead on single-layer image editing or multi-layer generation, which assume a flat canvas and lack the reasoning needed to determine what and where to modify. To address this gap, we introduce the Multi-Layer Document Editing Agent (MiLDEAgent), a reasoning-based framework that combines an RL-trained multimodal reasoner for layer-wise understanding with an image editor for targeted modifications. To systematically benchmark this setting, we introduce the MiLDEBench, a human-in-the-loop corpus of over 20K design documents paired with diverse editing instructions. The benchmark is complemented by a task-specific evaluation protocol, MiLDEEval, which spans four dimensions including instruction following, layout consistency, aesthetics, and text rendering. Extensive experiments on 14 open-source and 2 closed-source models reveal that existing approaches fail to generalize: open-source models often cannot complete multi-layer document editing tasks, while closed-source models suffer from format violations. In contrast, MiLDEAgent achieves strong layer-aware reasoning and precise editing, significantly outperforming all open-source baselines and attaining performance comparable to closed-source models, thereby establishing the first strong baseline for multi-layer document editing.
Abstract:Human beings primarily understand the world through concepts (e.g., dog), abstract mental representations that structure perception, reasoning, and learning. However, how large language models (LLMs) acquire, retain, and forget such concepts during continual pretraining remains poorly understood. In this work, we study how individual concepts are acquired and forgotten, as well as how multiple concepts interact through interference and synergy. We link these behavioral dynamics to LLMs' internal Concept Circuits, computational subgraphs associated with specific concepts, and incorporate Graph Metrics to characterize circuit structure. Our analysis reveals: (1) LLMs concept circuits provide a non-trivial, statistically significant signal of concept learning and forgetting; (2) Concept circuits exhibit a stage-wise temporal pattern during continual pretraining, with an early increase followed by gradual decrease and stabilization; (3) concepts with larger learning gains tend to exhibit greater forgetting under subsequent training; (4) semantically similar concepts induce stronger interference than weakly related ones; (5) conceptual knowledge differs in their transferability, with some significantly facilitating the learning of others. Together, our findings offer a circuit-level view of concept learning dynamics and inform the design of more interpretable and robust concept-aware training strategies for LLMs.
Abstract:Recent progress in flow-based generative models and reinforcement learning (RL) has improved text-image alignment and visual quality. However, current RL training for flow models still has two main problems: (i) GRPO-style fixed per-prompt group sizes ignore variation in sampling importance across prompts, which leads to inefficient sampling and slower training; and (ii) trajectory-level advantages are reused as per-step estimates, which biases credit assignment along the flow. We propose SuperFlow, an RL training framework for flow-based models that adjusts group sizes with variance-aware sampling and computes step-level advantages in a way that is consistent with continuous-time flow dynamics. Empirically, SuperFlow reaches promising performance while using only 5.4% to 56.3% of the original training steps and reduces training time by 5.2% to 16.7% without any architectural changes. On standard text-to-image (T2I) tasks, including text rendering, compositional image generation, and human preference alignment, SuperFlow improves over SD3.5-M by 4.6% to 47.2%, and over Flow-GRPO by 1.7% to 16.0%.




Abstract:The rapid progress of large language models (LLMs) is fueled by the growing reliance on datasets that blend real and synthetic data. While synthetic data offers scalability and cost-efficiency, it often introduces systematic distributional discrepancies, particularly underrepresenting long-tail knowledge due to truncation effects from data generation mechanisms like top-p sampling, temperature scaling, and finite sampling. These discrepancies pose fundamental challenges in characterizing and evaluating the utility of mixed real-synthetic datasets. In this paper, we identify a three-phase scaling behavior characterized by two breakpoints that reflect transitions in model behavior across learning head and tail knowledge. We further derive an LLM generalization bound designed for real and synthetic mixtures, revealing several key factors that govern their generalization performance. Building on our theoretical findings, we propose an effective yet efficient data valuation method that scales to large-scale datasets. Comprehensive experiments across four tasks, including image classification, sentiment classification, instruction following, and complex reasoning, demonstrate that our method surpasses state-of-the-art baselines in data valuation with significantly low computational cost.
Abstract:Recent advances in large language models (LLMs) have enabled multimodal foundation models to tackle both image understanding and generation within a unified framework. Despite these gains, unified models often underperform compared to specialized models in either task. A key challenge in developing unified models lies in the inherent differences between the visual features needed for image understanding versus generation, as well as the distinct training processes required for each modality. In this work, we introduce Pisces, an auto-regressive multimodal foundation model that addresses this challenge through a novel decoupled visual encoding architecture and tailored training techniques optimized for multimodal generation. Combined with meticulous data curation, pretraining, and finetuning, Pisces achieves competitive performance in both image understanding and image generation. We evaluate Pisces on over 20 public benchmarks for image understanding, where it demonstrates strong performance across a wide range of tasks. Additionally, on GenEval, a widely adopted benchmark for image generation, Pisces exhibits robust generative capabilities. Our extensive analysis reveals the synergistic relationship between image understanding and generation, and the benefits of using separate visual encoders, advancing the field of unified multimodal models.
Abstract:We introduce Autoregressive Retrieval Augmentation (AR-RAG), a novel paradigm that enhances image generation by autoregressively incorporating knearest neighbor retrievals at the patch level. Unlike prior methods that perform a single, static retrieval before generation and condition the entire generation on fixed reference images, AR-RAG performs context-aware retrievals at each generation step, using prior-generated patches as queries to retrieve and incorporate the most relevant patch-level visual references, enabling the model to respond to evolving generation needs while avoiding limitations (e.g., over-copying, stylistic bias, etc.) prevalent in existing methods. To realize AR-RAG, we propose two parallel frameworks: (1) Distribution-Augmentation in Decoding (DAiD), a training-free plug-and-use decoding strategy that directly merges the distribution of model-predicted patches with the distribution of retrieved patches, and (2) Feature-Augmentation in Decoding (FAiD), a parameter-efficient fine-tuning method that progressively smooths the features of retrieved patches via multi-scale convolution operations and leverages them to augment the image generation process. We validate the effectiveness of AR-RAG on widely adopted benchmarks, including Midjourney-30K, GenEval and DPG-Bench, demonstrating significant performance gains over state-of-the-art image generation models.
Abstract:Recent advances in multimodal foundation models unifying image understanding and generation have opened exciting avenues for tackling a wide range of vision-language tasks within a single framework. Despite progress, existing unified models typically require extensive pretraining and struggle to achieve the same level of performance compared to models dedicated to each task. Additionally, many of these models suffer from slow image generation speeds, limiting their practical deployment in real-time or resource-constrained settings. In this work, we propose Layerwise Timestep-Expert Flow-based Transformer (LaTtE-Flow), a novel and efficient architecture that unifies image understanding and generation within a single multimodal model. LaTtE-Flow builds upon powerful pretrained Vision-Language Models (VLMs) to inherit strong multimodal understanding capabilities, and extends them with a novel Layerwise Timestep Experts flow-based architecture for efficient image generation. LaTtE-Flow distributes the flow-matching process across specialized groups of Transformer layers, each responsible for a distinct subset of timesteps. This design significantly improves sampling efficiency by activating only a small subset of layers at each sampling timestep. To further enhance performance, we propose a Timestep-Conditioned Residual Attention mechanism for efficient information reuse across layers. Experiments demonstrate that LaTtE-Flow achieves strong performance on multimodal understanding tasks, while achieving competitive image generation quality with around 6x faster inference speed compared to recent unified multimodal models.




Abstract:Reasoning is a fundamental capability often required in real-world text-to-image (T2I) generation, e.g., generating ``a bitten apple that has been left in the air for more than a week`` necessitates understanding temporal decay and commonsense concepts. While recent T2I models have made impressive progress in producing photorealistic images, their reasoning capability remains underdeveloped and insufficiently evaluated. To bridge this gap, we introduce R2I-Bench, a comprehensive benchmark specifically designed to rigorously assess reasoning-driven T2I generation. R2I-Bench comprises meticulously curated data instances, spanning core reasoning categories, including commonsense, mathematical, logical, compositional, numerical, causal, and concept mixing. To facilitate fine-grained evaluation, we design R2IScore, a QA-style metric based on instance-specific, reasoning-oriented evaluation questions that assess three critical dimensions: text-image alignment, reasoning accuracy, and image quality. Extensive experiments with 16 representative T2I models, including a strong pipeline-based framework that decouples reasoning and generation using the state-of-the-art language and image generation models, demonstrate consistently limited reasoning performance, highlighting the need for more robust, reasoning-aware architectures in the next generation of T2I systems. Project Page: https://r2i-bench.github.io
Abstract:This work investigates the optimal allocation of inference compute across three key scaling factors in video vision language models: language model size, frame count, and the number of visual tokens per frame. While prior works typically focuses on optimizing model efficiency or improving performance without considering resource constraints, we instead identify optimal model configuration under fixed inference compute budgets. We conduct large-scale training sweeps and careful parametric modeling of task performance to identify the inference compute-optimal frontier. Our experiments reveal how task performance depends on scaling factors and finetuning data size, as well as how changes in data size shift the compute-optimal frontier. These findings translate to practical tips for selecting these scaling factors.