Abstract:As machine learning evolves, domain generalization (DG) and domain adaptation (DA) have become crucial for enhancing model robustness across diverse environments. Contrastive Language-Image Pretraining (CLIP) plays a significant role in these tasks, offering powerful zero-shot capabilities that allow models to perform effectively in unseen domains. However, there remains a significant gap in the literature, as no comprehensive survey currently exists that systematically explores the applications of CLIP in DG and DA, highlighting the necessity for this review. This survey presents a comprehensive review of CLIP's applications in DG and DA. In DG, we categorize methods into optimizing prompt learning for task alignment and leveraging CLIP as a backbone for effective feature extraction, both enhancing model adaptability. For DA, we examine both source-available methods utilizing labeled source data and source-free approaches primarily based on target domain data, emphasizing knowledge transfer mechanisms and strategies for improved performance across diverse contexts. Key challenges, including overfitting, domain diversity, and computational efficiency, are addressed, alongside future research opportunities to advance robustness and efficiency in practical applications. By synthesizing existing literature and pinpointing critical gaps, this survey provides valuable insights for researchers and practitioners, proposing directions for effectively leveraging CLIP to enhance methodologies in domain generalization and adaptation. Ultimately, this work aims to foster innovation and collaboration in the quest for more resilient machine learning models that can perform reliably across diverse real-world scenarios. A more up-to-date version of the papers is maintained at: https://github.com/jindongli-Ai/Survey_on_CLIP-Powered_Domain_Generalization_and_Adaptation.
Abstract:Source-Free Unsupervised Open-Set Domain Adaptation (SF-OSDA) methods using CLIP face significant issues: (1) while heavily dependent on domain-specific threshold selection, existing methods employ simple fixed thresholds, underutilizing CLIP's zero-shot potential in SF-OSDA scenarios; and (2) overlook intrinsic class tendencies while employing complex training to enforce feature separation, incurring deployment costs and feature shifts that compromise CLIP's generalization ability. To address these issues, we propose CLIPXpert, a novel SF-OSDA approach that integrates two key components: an adaptive thresholding strategy and an unknown class feature filtering module. Specifically, the Box-Cox GMM-Based Adaptive Thresholding (BGAT) module dynamically determines the optimal threshold by estimating sample score distributions, balancing known class recognition and unknown class sample detection. Additionally, the Singular Value Decomposition (SVD)-Based Unknown-Class Feature Filtering (SUFF) module reduces the tendency of unknown class samples towards known classes, improving the separation between known and unknown classes. Experiments show that our source-free and training-free method outperforms state-of-the-art trained approach UOTA by 1.92% on the DomainNet dataset, achieves SOTA-comparable performance on datasets such as Office-Home, and surpasses other SF-OSDA methods. This not only validates the effectiveness of our proposed method but also highlights CLIP's strong zero-shot potential for SF-OSDA tasks.
Abstract:Hyperbolic neural networks have emerged as a powerful tool for modeling hierarchical data across diverse modalities. Recent studies show that token distributions in foundation models exhibit scale-free properties, suggesting that hyperbolic space is a more suitable ambient space than Euclidean space for many pre-training and downstream tasks. However, existing tools lack essential components for building hyperbolic foundation models, making it difficult to leverage recent advancements. We introduce HyperCore, a comprehensive open-source framework that provides core modules for constructing hyperbolic foundation models across multiple modalities. HyperCore's modules can be effortlessly combined to develop novel hyperbolic foundation models, eliminating the need to extensively modify Euclidean modules from scratch and possible redundant research efforts. To demonstrate its versatility, we build and test the first fully hyperbolic vision transformers (LViT) with a fine-tuning pipeline, the first fully hyperbolic multimodal CLIP model (L-CLIP), and a hybrid Graph RAG with a hyperbolic graph encoder. Our experiments demonstrate that LViT outperforms its Euclidean counterpart. Additionally, we benchmark and reproduce experiments across hyperbolic GNNs, CNNs, Transformers, and vision Transformers to highlight HyperCore's advantages.
Abstract:In the era of foundation models and Large Language Models (LLMs), Euclidean space has been the de facto geometric setting for machine learning architectures. However, recent literature has demonstrated that this choice comes with fundamental limitations. At a large scale, real-world data often exhibit inherently non-Euclidean structures, such as multi-way relationships, hierarchies, symmetries, and non-isotropic scaling, in a variety of domains, such as languages, vision, and the natural sciences. It is challenging to effectively capture these structures within the constraints of Euclidean spaces. This position paper argues that moving beyond Euclidean geometry is not merely an optional enhancement but a necessity to maintain the scaling law for the next-generation of foundation models. By adopting these geometries, foundation models could more efficiently leverage the aforementioned structures. Task-aware adaptability that dynamically reconfigures embeddings to match the geometry of downstream applications could further enhance efficiency and expressivity. Our position is supported by a series of theoretical and empirical investigations of prevalent foundation models.Finally, we outline a roadmap for integrating non-Euclidean geometries into foundation models, including strategies for building geometric foundation models via fine-tuning, training from scratch, and hybrid approaches.
Abstract:Large Language Models (LLMs) excel in handling general knowledge tasks, yet they struggle with user-specific personalization, such as understanding individual emotions, writing styles, and preferences. Personalized Large Language Models (PLLMs) tackle these challenges by leveraging individual user data, such as user profiles, historical dialogues, content, and interactions, to deliver responses that are contextually relevant and tailored to each user's specific needs. This is a highly valuable research topic, as PLLMs can significantly enhance user satisfaction and have broad applications in conversational agents, recommendation systems, emotion recognition, medical assistants, and more. This survey reviews recent advancements in PLLMs from three technical perspectives: prompting for personalized context (input level), finetuning for personalized adapters (model level), and alignment for personalized preferences (objective level). To provide deeper insights, we also discuss current limitations and outline several promising directions for future research. Updated information about this survey can be found at the https://github.com/JiahongLiu21/Awesome-Personalized-Large-Language-Models.
Abstract:Textual documents are commonly connected in a hierarchical graph structure where a central document links to others with an exponentially growing connectivity. Though Hyperbolic Graph Neural Networks (HGNNs) excel at capturing such graph hierarchy, they cannot model the rich textual semantics within documents. Moreover, text contents in documents usually discuss topics of different specificity. Hierarchical Topic Models (HTMs) discover such latent topic hierarchy within text corpora. However, most of them focus on the textual content within documents, and ignore the graph adjacency across interlinked documents. We thus propose a Hierarchical Graph Topic Modeling Transformer to integrate both topic hierarchy within documents and graph hierarchy across documents into a unified Transformer. Specifically, to incorporate topic hierarchy within documents, we design a topic tree and infer a hierarchical tree embedding for hierarchical topic modeling. To preserve both topic and graph hierarchies, we design our model in hyperbolic space and propose Hyperbolic Doubly Recurrent Neural Network, which models ancestral and fraternal tree structure. Both hierarchies are inserted into each Transformer layer to learn unified representations. Both supervised and unsupervised experiments verify the effectiveness of our model.
Abstract:Large language models based Multi Agent Systems (MAS) have demonstrated promising performance for enhancing the efficiency and accuracy of code generation tasks. However,most existing methods follow a conventional sequence of planning, coding, and debugging,which contradicts the growth-driven nature of human learning process. Additionally,the frequent information interaction between multiple agents inevitably involves high computational costs. In this paper,we propose Cogito,a neurobiologically inspired multi-agent framework to enhance the problem-solving capabilities in code generation tasks with lower cost. Specifically,Cogito adopts a reverse sequence: it first undergoes debugging, then coding,and finally planning. This approach mimics human learning and development,where knowledge is acquired progressively. Accordingly,a hippocampus-like memory module with different functions is designed to work with the pipeline to provide quick retrieval in similar tasks. Through this growth-based learning model,Cogito accumulates knowledge and cognitive skills at each stage,ultimately forming a Super Role an all capable agent to perform the code generation task. Extensive experiments against representative baselines demonstrate the superior performance and efficiency of Cogito. The code is publicly available at https://anonymous.4open.science/r/Cogito-0083.
Abstract:The rapid advancement of foundation modelslarge-scale neural networks trained on diverse, extensive datasetshas revolutionized artificial intelligence, enabling unprecedented advancements across domains such as natural language processing, computer vision, and scientific discovery. However, the substantial parameter count of these models, often reaching billions or trillions, poses significant challenges in adapting them to specific downstream tasks. Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges, offering a parameter-efficient mechanism to fine-tune foundation models with minimal computational overhead. This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models, including recent techniques foundations, emerging frontiers and applications of low-rank adaptation across multiple domains. Finally, this survey discusses key challenges and future research directions in theoretical understanding, scalability, and robustness. This survey serves as a valuable resource for researchers and practitioners working with efficient foundation model adaptation.
Abstract:Hyperbolic neural networks have emerged as a powerful tool for modeling hierarchical data structures prevalent in real-world datasets. Notably, residual connections, which facilitate the direct flow of information across layers, have been instrumental in the success of deep neural networks. However, current methods for constructing hyperbolic residual networks suffer from limitations such as increased model complexity, numerical instability, and errors due to multiple mappings to and from the tangent space. To address these limitations, we introduce LResNet, a novel Lorentzian residual neural network based on the weighted Lorentzian centroid in the Lorentz model of hyperbolic geometry. Our method enables the efficient integration of residual connections in Lorentz hyperbolic neural networks while preserving their hierarchical representation capabilities. We demonstrate that our method can theoretically derive previous methods while offering improved stability, efficiency, and effectiveness. Extensive experiments on both graph and vision tasks showcase the superior performance and robustness of our method compared to state-of-the-art Euclidean and hyperbolic alternatives. Our findings highlight the potential of \method for building more expressive neural networks in hyperbolic embedding space as a generally applicable method to multiple architectures, including CNNs, GNNs, and graph Transformers.
Abstract:Modern recommendation systems often create information cocoons, limiting users' exposure to diverse content. To enhance user experience, a crucial challenge is developing systems that can balance content exploration and exploitation, allowing users to adjust their recommendation preferences. Intuitively, this balance can be achieved through a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, current works face two challenges to achieve this target: (1) Euclidean methods fail to fully capture hierarchical structures and lack flexibility in balancing exploration-exploitation, while (2) hyperbolic approaches, despite better hierarchical modeling, suffer from insufficient semantic alignment due to their reliance on Euclidean text encoders. To address these challenges, we propose HARec, a hyperbolic representation learning framework that jointly aligns user-item collaborative information with textual descriptions in hyperbolic space. Our framework introduces two key technique novelty: (1) a hierarchical-aware graph-llm alignment mechanism that enables better hierarchical representation, and (2) a hyperbolic hierarchical tree structure that facilitates user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HARec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics.