Abstract:Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm. With these models being usually characterized by intuition-driven design or highly intricate components, placing them within the theoretical analysis framework to distill the core concepts, helps understand the key principles that drive the functionality better and guide further development. Given this surge in interest, this article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models. Encompassing discussions on fundamental aspects such as expressiveness power, generalization, optimization, and unique phenomena such as over-smoothing and over-squashing, this piece delves into the theoretical foundations and frontier driving the evolution of graph learning. In addition, this article also presents several challenges and further initiates discussions on possible solutions.
Abstract:Hyperbolic geometry have shown significant potential in modeling complex structured data, particularly those with underlying tree-like and hierarchical structures. Despite the impressive performance of various hyperbolic neural networks across numerous domains, research on adapting the Transformer to hyperbolic space remains limited. Previous attempts have mainly focused on modifying self-attention modules in the Transformer. However, these efforts have fallen short of developing a complete hyperbolic Transformer. This stems primarily from: (i) the absence of well-defined modules in hyperbolic space, including linear transformation layers, LayerNorm layers, activation functions, dropout operations, etc. (ii) the quadratic time complexity of the existing hyperbolic self-attention module w.r.t the number of input tokens, which hinders its scalability. To address these challenges, we propose, Hypformer, a novel hyperbolic Transformer based on the Lorentz model of hyperbolic geometry. In Hypformer, we introduce two foundational blocks that define the essential modules of the Transformer in hyperbolic space. Furthermore, we develop a linear self-attention mechanism in hyperbolic space, enabling hyperbolic Transformer to process billion-scale graph data and long-sequence inputs for the first time. Our experimental results confirm the effectiveness and efficiency of Hypformer across various datasets, demonstrating its potential as an effective and scalable solution for large-scale data representation and large models.
Abstract:Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios, where each node and edge are associated with text descriptions, and both the graph structure and text descriptions evolve over time. Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs, which hinders the potential advancement in many research fields. To address this gap, we introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs from diverse domains, with nodes and edges enriched by dynamically changing text attributes and categories. To facilitate the use of DTGB, we design standardized evaluation procedures based on four real-world use cases: future link prediction, destination node retrieval, edge classification, and textual relation generation. These tasks require models to understand both dynamic graph structures and natural language, highlighting the unique challenges posed by DyTAGs. Moreover, we conduct extensive benchmark experiments on DTGB, evaluating 7 popular dynamic graph learning algorithms and their variants of adapting to text attributes with LLM embeddings, along with 6 powerful large language models (LLMs). Our results show the limitations of existing models in handling DyTAGs. Our analysis also demonstrates the utility of DTGB in investigating the incorporation of structural and textual dynamics. The proposed DTGB fosters research on DyTAGs and their broad applications. It offers a comprehensive benchmark for evaluating and advancing models to handle the interplay between dynamic graph structures and natural language. The dataset and source code are available at https://github.com/zjs123/DTGB.
Abstract:The non-Euclidean geometry of hyperbolic spaces has recently garnered considerable attention in the realm of representation learning. Current endeavors in hyperbolic representation largely presuppose that the underlying hierarchies can be automatically inferred and preserved through the adaptive optimization process. This assumption, however, is questionable and requires further validation. In this work, we first introduce a position-tracking mechanism to scrutinize existing prevalent \hlms, revealing that the learned representations are sub-optimal and unsatisfactory. To address this, we propose a simple yet effective method, hyperbolic informed embedding (HIE), by incorporating cost-free hierarchical information deduced from the hyperbolic distance of the node to origin (i.e., induced hyperbolic norm) to advance existing \hlms. The proposed method HIE is both task-agnostic and model-agnostic, enabling its seamless integration with a broad spectrum of models and tasks. Extensive experiments across various models and different tasks demonstrate the versatility and adaptability of the proposed method. Remarkably, our method achieves a remarkable improvement of up to 21.4\% compared to the competing baselines.
Abstract:Maximizing the user-item engagement based on vectorized embeddings is a standard procedure of recent recommender models. Despite the superior performance for item recommendations, these methods however implicitly deprioritize the modeling of user-wise similarity in the embedding space; consequently, identifying similar users is underperforming, and additional processing schemes are usually required otherwise. To avoid thorough model re-training, we propose WSFE, a model-agnostic and training-free representation encoder, to be flexibly employed on the fly for effective user segmentation. Underpinned by the optimal transport theory, the encoded representations from WSFE present a matched user-wise similarity/distance measurement between the realistic and embedding space. We incorporate WSFE into six state-of-the-art recommender models and conduct extensive experiments on six real-world datasets. The empirical analyses well demonstrate the superiority and generality of WSFE to fuel multiple downstream tasks with diverse underlying targets in recommendation.
Abstract:Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
Abstract:Graph-structured data are widespread in real-world applications, such as social networks, recommender systems, knowledge graphs, chemical molecules etc. Despite the success of Euclidean space for graph-related learning tasks, its ability to model complex patterns is essentially constrained by its polynomially growing capacity. Recently, hyperbolic spaces have emerged as a promising alternative for processing graph data with tree-like structure or power-law distribution, owing to the exponential growth property. Different from Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gains natural advantages in abstracting tree-like or scale-free graphs with hierarchical organizations. In this tutorial, we aim to give an introduction to this emerging field of graph representation learning with the express purpose of being accessible to all audiences. We first give a brief introduction to graph representation learning as well as some preliminary Riemannian and hyperbolic geometry. We then comprehensively revisit the hyperbolic embedding techniques, including hyperbolic shallow models and hyperbolic neural networks. In addition, we introduce the technical details of the current hyperbolic graph neural networks by unifying them into a general framework and summarizing the variants of each component. Moreover, we further introduce a series of related applications in a variety of fields. In the last part, we discuss several advanced topics about hyperbolic geometry for graph representation learning, which potentially serve as guidelines for further flourishing the non-Euclidean graph learning community.
Abstract:Considering the prevalence of the power-law distribution in user-item networks, hyperbolic space has attracted considerable attention and achieved impressive performance in the recommender system recently. The advantage of hyperbolic recommendation lies in that its exponentially increasing capacity is well-suited to describe the power-law distributed user-item network whereas the Euclidean equivalent is deficient. Nonetheless, it remains unclear which kinds of items can be effectively recommended by the hyperbolic model and which cannot. To address the above concerns, we take the most basic recommendation technique, collaborative filtering, as a medium, to investigate the behaviors of hyperbolic and Euclidean recommendation models. The results reveal that (1) tail items get more emphasis in hyperbolic space than that in Euclidean space, but there is still ample room for improvement; (2) head items receive modest attention in hyperbolic space, which could be considerably improved; (3) and nonetheless, the hyperbolic models show more competitive performance than Euclidean models. Driven by the above observations, we design a novel learning method, named hyperbolic informative collaborative filtering (HICF), aiming to compensate for the recommendation effectiveness of the head item while at the same time improving the performance of the tail item. The main idea is to adapt the hyperbolic margin ranking learning, making its pull and push procedure geometric-aware, and providing informative guidance for the learning of both head and tail items. Extensive experiments back up the analytic findings and also show the effectiveness of the proposed method. The work is valuable for personalized recommendations since it reveals that the hyperbolic space facilitates modeling the tail item, which often represents user-customized preferences or new products.
Abstract:Graphs are a popular data type found in many domains. Numerous techniques have been proposed to find interesting patterns in graphs to help understand the data and support decision-making. However, there are generally two limitations that hinder their practical use: (1) they have multiple parameters that are hard to set but greatly influence results, (2) and they generally focus on identifying complex subgraphs while ignoring relationships between attributes of nodes.Graphs are a popular data type found in many domains. Numerous techniques have been proposed to find interesting patterns in graphs to help understand the data and support decision-making. However, there are generally two limitations that hinder their practical use: (1) they have multiple parameters that are hard to set but greatly influence results, (2) and they generally focus on identifying complex subgraphs while ignoring relationships between attributes of nodes. To address these problems, we propose a parameter-free algorithm named CSPM (Compressing Star Pattern Miner) which identifies star-shaped patterns that indicate strong correlations among attributes via the concept of conditional entropy and the minimum description length principle. Experiments performed on several benchmark datasets show that CSPM reveals insightful and interpretable patterns and is efficient in runtime. Moreover, quantitative evaluations on two real-world applications show that CSPM has broad applications as it successfully boosts the accuracy of graph attribute completion models by up to 30.68\% and uncovers important patterns in telecommunication alarm data.
Abstract:In large-scale recommender systems, the user-item networks are generally scale-free or expand exponentially. The latent features (also known as embeddings) used to describe the user and item are determined by how well the embedding space fits the data distribution. Hyperbolic space offers a spacious room to learn embeddings with its negative curvature and metric properties, which can well fit data with tree-like structures. Recently, several hyperbolic approaches have been proposed to learn high-quality representations for the users and items. However, most of them concentrate on developing the hyperbolic similitude by designing appropriate projection operations, whereas many advantageous and exciting geometric properties of hyperbolic space have not been explicitly explored. For example, one of the most notable properties of hyperbolic space is that its capacity space increases exponentially with the radius, which indicates the area far away from the hyperbolic origin is much more embeddable. Regarding the geometric properties of hyperbolic space, we bring up a \textit{Hyperbolic Regularization powered Collaborative Filtering} (HRCF) and design a geometric-aware hyperbolic regularizer. Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty, which is simple yet impressively effective. Through theoretical analysis, we further show that our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability. We conduct extensive empirical analysis, comparing our proposal against a large set of baselines on several public benchmarks. The empirical results show that our approach achieves highly competitive performance and surpasses both the leading Euclidean and hyperbolic baselines by considerable margins. Further analysis verifies ...