School of Software & Microelectronics, Peking University, Beijing, China
Abstract:As world models gain momentum in Embodied AI, an increasing number of works explore using video foundation models as predictive world models for downstream embodied tasks like 3D prediction or interactive generation. However, before exploring these downstream tasks, video foundation models still have two critical questions unanswered: (1) whether their generative generalization is sufficient to maintain perceptual fidelity in the eyes of human observers, and (2) whether they are robust enough to serve as a universal prior for real-world embodied agents. To provide a standardized framework for answering these questions, we introduce the Embodied Turing Test benchmark: WoW-World-Eval (Wow,wo,val). Building upon 609 robot manipulation data, Wow-wo-val examines five core abilities, including perception, planning, prediction, generalization, and execution. We propose a comprehensive evaluation protocol with 22 metrics to assess the models' generation ability, which achieves a high Pearson Correlation between the overall score and human preference (>0.93) and establishes a reliable foundation for the Human Turing Test. On Wow-wo-val, models achieve only 17.27 on long-horizon planning and at best 68.02 on physical consistency, indicating limited spatiotemporal consistency and physical reasoning. For the Inverse Dynamic Model Turing Test, we first use an IDM to evaluate the video foundation models' execution accuracy in the real world. However, most models collapse to $\approx$ 0% success, while WoW maintains a 40.74% success rate. These findings point to a noticeable gap between the generated videos and the real world, highlighting the urgency and necessity of benchmarking World Model in Embodied AI.
Abstract:The integration of multicarrier modulation and multiple-input-multiple-output (MIMO) is critical for reliable transmission of wireless signals in complex environments, which significantly improve spectrum efficiency. Existing studies have shown that popular orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM) offer significant advantages over orthogonal frequency division multiplexing (OFDM) in uncoded doubly selective channels. However, it remains uncertain whether these benefits extend to coded systems. Meanwhile, the information-theoretic limit analysis of coded MIMO multicarrier systems and the corresponding low-complexity receiver design remain unclear. To overcome these challenges, this paper proposes a multi-slot cross-domain memory approximate message passing (MS-CD-MAMP) receiver as well as develops its information-theoretic (i.e., achievable rate) limit and optimal coding principle for MIMO-multicarrier modulation (e.g., OFDM, OTFS, and AFDM) systems. The proposed MS-CD-MAMP receiver can exploit not only the time domain channel sparsity for low complexity but also the corresponding symbol domain constellation constraints for performance enhancement. Meanwhile, limited by the high-dimensional complex state evolution (SE), a simplified single-input single-output variational SE is proposed to derive the achievable rate of MS-CD-MAMP and the optimal coding principle with the goal of maximizing the achievable rate. Numerical results show that coded MIMO-OFDM/OTFS/AFDM with MS-CD-MAMP achieve the same maximum achievable rate in doubly selective channels, whose finite-length performance with practical optimized low-density parity-check (LDPC) codes is only 0.5 $\sim$ 1.8 dB away from the associated theoretical limit, and has 0.8 $\sim$ 4.4 dB gain over the well-designed point-to-point LDPC codes.
Abstract:Microservice systems have become the backbone of cloud-native enterprise applications due to their resource elasticity, loosely coupled architecture, and lightweight deployment. Yet, the intrinsic complexity and dynamic runtime interactions of such systems inevitably give rise to anomalies. Ensuring system reliability therefore hinges on effective root cause analysis (RCA), which entails not only localizing the source of anomalies but also characterizing the underlying failures in a timely and interpretable manner. Recent advances in intelligent RCA techniques, particularly those powered by large language models (LLMs), have demonstrated promising capabilities, as LLMs reduce reliance on handcrafted features while offering cross-platform adaptability, task generalization, and flexibility. However, existing LLM-based methods still suffer from two critical limitations: (a) limited exploration diversity, which undermines accuracy, and (b) heavy dependence on large-scale LLMs, which results in slow inference. To overcome these challenges, we propose SpecRCA, a speculative root cause analysis framework for microservices that adopts a \textit{hypothesize-then-verify} paradigm. SpecRCA first leverages a hypothesis drafting module to rapidly generate candidate root causes, and then employs a parallel root cause verifier to efficiently validate them. Preliminary experiments on the AIOps 2022 dataset demonstrate that SpecRCA achieves superior accuracy and efficiency compared to existing approaches, highlighting its potential as a practical solution for scalable and interpretable RCA in complex microservice environments.
Abstract:As contemporary microservice systems become increasingly popular and complex-often comprising hundreds or even thousands of fine-grained, interdependent subsystems-they are experiencing more frequent failures. Ensuring system reliability thus demands accurate root cause localization. While many traditional graph-based and deep learning approaches have been explored for this task, they often rely heavily on pre-defined schemas that struggle to adapt to evolving operational contexts. Consequently, a number of LLM-based methods have recently been proposed. However, these methods still face two major limitations: shallow, symptom-centric reasoning that undermines accuracy, and a lack of cross-alert reuse that leads to redundant reasoning and high latency. In this paper, we conduct a comprehensive study of how Site Reliability Engineers (SREs) localize the root causes of failures, drawing insights from professionals across multiple organizations. Our investigation reveals that expert root cause analysis exhibits three key characteristics: recursiveness, multi-dimensional expansion, and cross-modal reasoning. Motivated by these findings, we introduce AMER-RCL, an agentic memory enhanced recursive reasoning framework for root cause localization in microservices. AMER-RCL employs the Recursive Reasoning RCL engine, a multi-agent framework that performs recursive reasoning on each alert to progressively refine candidate causes, while Agentic Memory incrementally accumulates and reuses reasoning from prior alerts within a time window to reduce redundant exploration and lower inference latency. Experimental results demonstrate that AMER-RCL consistently outperforms state-of-the-art methods in both localization accuracy and inference efficiency.
Abstract:Machine learning (ML) offers a powerful path toward discovering sustainable polymer materials, but progress has been limited by the lack of large, high-quality, and openly accessible polymer datasets. The Open Polymer Challenge (OPC) addresses this gap by releasing the first community-developed benchmark for polymer informatics, featuring a dataset with 10K polymers and 5 properties: thermal conductivity, radius of gyration, density, fractional free volume, and glass transition temperature. The challenge centers on multi-task polymer property prediction, a core step in virtual screening pipelines for materials discovery. Participants developed models under realistic constraints that include small data, label imbalance, and heterogeneous simulation sources, using techniques such as feature-based augmentation, transfer learning, self-supervised pretraining, and targeted ensemble strategies. The competition also revealed important lessons about data preparation, distribution shifts, and cross-group simulation consistency, informing best practices for future large-scale polymer datasets. The resulting models, analysis, and released data create a new foundation for molecular AI in polymer science and are expected to accelerate the development of sustainable and energy-efficient materials. Along with the competition, we release the test dataset at https://www.kaggle.com/datasets/alexliu99/neurips-open-polymer-prediction-2025-test-data. We also release the data generation pipeline at https://github.com/sobinalosious/ADEPT, which simulates more than 25 properties, including thermal conductivity, radius of gyration, and density.
Abstract:Log-based anomaly detection is critical for ensuring the stability and reliability of web systems. One of the key problems in this task is the lack of sufficient labeled logs, which limits the rapid deployment in new systems. Existing works usually leverage large-scale labeled logs from a mature web system and a small amount of labeled logs from a new system, using transfer learning to extract and generalize general knowledge across both domains. However, these methods focus solely on the transfer of general knowledge and neglect the disparity and potential mismatch between such knowledge and the proprietary knowledge of target system, thus constraining performance. To address this limitation, we propose FusionLog, a novel zero-label cross-system log-based anomaly detection method that effectively achieves the fusion of general and proprietary knowledge, enabling cross-system generalization without any labeled target logs. Specifically, we first design a training-free router based on semantic similarity that dynamically partitions unlabeled target logs into 'general logs' and 'proprietary logs.' For general logs, FusionLog employs a small model based on system-agnostic representation meta-learning for direct training and inference, inheriting the general anomaly patterns shared between the source and target systems. For proprietary logs, we iteratively generate pseudo-labels and fine-tune the small model using multi-round collaborative knowledge distillation and fusion based on large language model (LLM) and small model (SM) to enhance its capability to recognize anomaly patterns specific to the target system. Experimental results on three public log datasets from different systems show that FusionLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming state-of-the-art cross-system log-based anomaly detection methods.
Abstract:Placental abruption is a severe complication during pregnancy, and its early accurate diagnosis is crucial for ensuring maternal and fetal safety. Traditional ultrasound diagnostic methods heavily rely on physician experience, leading to issues such as subjective bias and diagnostic inconsistencies. This paper proposes an improved model, EH-YOLOv11n (Enhanced Hemorrhage-YOLOv11n), based on small-sample learning, aiming to achieve automatic detection of hematoma features in placental ultrasound images. The model enhances performance through multidimensional optimization: it integrates wavelet convolution and coordinate convolution to strengthen frequency and spatial feature extraction; incorporates a cascaded group attention mechanism to suppress ultrasound artifacts and occlusion interference, thereby improving bounding box localization accuracy. Experimental results demonstrate a detection accuracy of 78%, representing a 2.5% improvement over YOLOv11n and a 13.7% increase over YOLOv8. The model exhibits significant superiority in precision-recall curves, confidence scores, and occlusion scenarios. Combining high accuracy with real-time processing, this model provides a reliable solution for computer-aided diagnosis of placental abruption, holding significant clinical application value.
Abstract:Humans develop an understanding of intuitive physics through active interaction with the world. This approach is in stark contrast to current video models, such as Sora, which rely on passive observation and therefore struggle with grasping physical causality. This observation leads to our central hypothesis: authentic physical intuition of the world model must be grounded in extensive, causally rich interactions with the real world. To test this hypothesis, we present WoW, a 14-billion-parameter generative world model trained on 2 million robot interaction trajectories. Our findings reveal that the model's understanding of physics is a probabilistic distribution of plausible outcomes, leading to stochastic instabilities and physical hallucinations. Furthermore, we demonstrate that this emergent capability can be actively constrained toward physical realism by SOPHIA, where vision-language model agents evaluate the DiT-generated output and guide its refinement by iteratively evolving the language instructions. In addition, a co-trained Inverse Dynamics Model translates these refined plans into executable robotic actions, thus closing the imagination-to-action loop. We establish WoWBench, a new benchmark focused on physical consistency and causal reasoning in video, where WoW achieves state-of-the-art performance in both human and autonomous evaluation, demonstrating strong ability in physical causality, collision dynamics, and object permanence. Our work provides systematic evidence that large-scale, real-world interaction is a cornerstone for developing physical intuition in AI. Models, data, and benchmarks will be open-sourced.




Abstract:Chinese font generation aims to create a new Chinese font library based on some reference samples. It is a topic of great concern to many font designers and typographers. Over the past years, with the rapid development of deep learning algorithms, various new techniques have achieved flourishing and thriving progress. Nevertheless, how to improve the overall quality of generated Chinese character images remains a tough issue. In this paper, we conduct a holistic survey of the recent Chinese font generation approaches based on deep learning. To be specific, we first illustrate the research background of the task. Then, we outline our literature selection and analysis methodology, and review a series of related fundamentals, including classical deep learning architectures, font representation formats, public datasets, and frequently-used evaluation metrics. After that, relying on the number of reference samples required to generate a new font, we categorize the existing methods into two major groups: many-shot font generation and few-shot font generation methods. Within each category, representative approaches are summarized, and their strengths and limitations are also discussed in detail. Finally, we conclude our paper with the challenges and future directions, with the expectation to provide some valuable illuminations for the researchers in this field.
Abstract:Existing inpainting methods often require extensive retraining or fine-tuning to integrate new content seamlessly, yet they struggle to maintain coherence in both structure and style between inpainted regions and the surrounding background. Motivated by these limitations, we introduce HarmonPaint, a training-free inpainting framework that seamlessly integrates with the attention mechanisms of diffusion models to achieve high-quality, harmonized image inpainting without any form of training. By leveraging masking strategies within self-attention, HarmonPaint ensures structural fidelity without model retraining or fine-tuning. Additionally, we exploit intrinsic diffusion model properties to transfer style information from unmasked to masked regions, achieving a harmonious integration of styles. Extensive experiments demonstrate the effectiveness of HarmonPaint across diverse scenes and styles, validating its versatility and performance.