Henry
Abstract:Recent advances in Audio-Language Models (ALMs) have significantly improved multimodal understanding capabilities. However, the introduction of the audio modality also brings new and unique vulnerability vectors. Previous studies have proposed jailbreak attacks that specifically target ALMs, revealing that defenses directly transferred from traditional audio adversarial attacks or text-based Large Language Model (LLM) jailbreaks are largely ineffective against these ALM-specific threats. To address this issue, we propose ALMGuard, the first defense framework tailored to ALMs. Based on the assumption that safety-aligned shortcuts naturally exist in ALMs, we design a method to identify universal Shortcut Activation Perturbations (SAPs) that serve as triggers that activate the safety shortcuts to safeguard ALMs at inference time. To better sift out effective triggers while preserving the model's utility on benign tasks, we further propose Mel-Gradient Sparse Mask (M-GSM), which restricts perturbations to Mel-frequency bins that are sensitive to jailbreaks but insensitive to speech understanding. Both theoretical analyses and empirical results demonstrate the robustness of our method against both seen and unseen attacks. Overall, \MethodName reduces the average success rate of advanced ALM-specific jailbreak attacks to 4.6% across four models, while maintaining comparable utility on benign benchmarks, establishing it as the new state of the art. Our code and data are available at https://github.com/WeifeiJin/ALMGuard.
Abstract:Recently, semantically constrained adversarial examples (SemanticAE), which are directly generated from natural language instructions, have become a promising avenue for future research due to their flexible attacking forms. To generate SemanticAEs, current methods fall short of satisfactory attacking ability as the key underlying factors of semantic uncertainty in human instructions, such as referring diversity, descriptive incompleteness, and boundary ambiguity, have not been fully investigated. To tackle the issues, this paper develops a multi-dimensional instruction uncertainty reduction (InSUR) framework to generate more satisfactory SemanticAE, i.e., transferable, adaptive, and effective. Specifically, in the dimension of the sampling method, we propose the residual-driven attacking direction stabilization to alleviate the unstable adversarial optimization caused by the diversity of language references. By coarsely predicting the language-guided sampling process, the optimization process will be stabilized by the designed ResAdv-DDIM sampler, therefore releasing the transferable and robust adversarial capability of multi-step diffusion models. In task modeling, we propose the context-encoded attacking scenario constraint to supplement the missing knowledge from incomplete human instructions. Guidance masking and renderer integration are proposed to regulate the constraints of 2D/3D SemanticAE, activating stronger scenario-adapted attacks. Moreover, in the dimension of generator evaluation, we propose the semantic-abstracted attacking evaluation enhancement by clarifying the evaluation boundary, facilitating the development of more effective SemanticAE generators. Extensive experiments demonstrate the superiority of the transfer attack performance of InSUR. Moreover, we realize the reference-free generation of semantically constrained 3D adversarial examples for the first time.
Abstract:Signed Graph Neural Networks (SGNNs) are widely adopted to analyze complex patterns in signed graphs with both positive and negative links. Given the noisy nature of real-world connections, the robustness of SGNN has also emerged as a pivotal research area. Under the supervision of empirical properties, graph structure learning has shown its robustness on signed graph representation learning, however, there remains a paucity of research investigating a robust SGNN with theoretical guidance. Inspired by the success of graph information bottleneck (GIB) in information extraction, we propose RIDGE, a novel framework for Robust sI gned graph learning through joint Denoising of Graph inputs and supervision targEts. Different from the basic GIB, we extend the GIB theory with the capability of target space denoising as the co-existence of noise in both input and target spaces. In instantiation, RIDGE effectively cleanses input data and supervision targets via a tractable objective function produced by reparameterization mechanism and variational approximation. We extensively validate our method on four prevalent signed graph datasets, and the results show that RIDGE clearly improves the robustness of popular SGNN models under various levels of noise.
Abstract:Website Fingerprinting (WF) attacks exploit patterns in encrypted traffic to infer the websites visited by users, posing a serious threat to anonymous communication systems. Although recent WF techniques achieve over 90% accuracy in controlled experimental settings, most studies remain confined to single scenarios, overlooking the complexity of real-world environments. This paper presents the first systematic and comprehensive evaluation of existing WF attacks under diverse realistic conditions, including defense mechanisms, traffic drift, multi-tab browsing, early-stage detection, open-world settings, and few-shot scenarios. Experimental results show that many WF techniques with strong performance in isolated settings degrade significantly when facing other conditions. Since real-world environments often combine multiple challenges, current WF attacks are difficult to apply directly in practice. This study highlights the limitations of WF attacks and introduces a multidimensional evaluation framework, offering critical insights for developing more robust and practical WF attacks.
Abstract:Recovering a low-CP-rank tensor from noisy linear measurements is a central challenge in high-dimensional data analysis, with applications spanning tensor PCA, tensor regression, and beyond. We exploit the intrinsic geometry of rank-one tensors by casting the recovery task as an optimization problem over the Segre manifold, the smooth Riemannian manifold of rank-one tensors. This geometric viewpoint yields two powerful algorithms: Riemannian Gradient Descent (RGD) and Riemannian Gauss-Newton (RGN), each of which preserves feasibility at every iteration. Under mild noise assumptions, we prove that RGD converges at a local linear rate, while RGN exhibits an initial local quadratic convergence phase that transitions to a linear rate as the iterates approach the statistical noise floor. Extensive synthetic experiments validate these convergence guarantees and demonstrate the practical effectiveness of our methods.
Abstract:The rapid progress of visual autoregressive (VAR) models has brought new opportunities for text-to-image generation, but also heightened safety concerns. Existing concept erasure techniques, primarily designed for diffusion models, fail to generalize to VARs due to their next-scale token prediction paradigm. In this paper, we first propose a novel VAR Erasure framework VARE that enables stable concept erasure in VAR models by leveraging auxiliary visual tokens to reduce fine-tuning intensity. Building upon this, we introduce S-VARE, a novel and effective concept erasure method designed for VAR, which incorporates a filtered cross entropy loss to precisely identify and minimally adjust unsafe visual tokens, along with a preservation loss to maintain semantic fidelity, addressing the issues such as language drift and reduced diversity introduce by na\"ive fine-tuning. Extensive experiments demonstrate that our approach achieves surgical concept erasure while preserving generation quality, thereby closing the safety gap in autoregressive text-to-image generation by earlier methods.
Abstract:Creating 3D assets that follow the texture and geometry style of existing ones is often desirable or even inevitable in practical applications like video gaming and virtual reality. While impressive progress has been made in generating 3D objects from text or images, creating style-controllable 3D assets remains a complex and challenging problem. In this work, we propose StyleSculptor, a novel training-free approach for generating style-guided 3D assets from a content image and one or more style images. Unlike previous works, StyleSculptor achieves style-guided 3D generation in a zero-shot manner, enabling fine-grained 3D style control that captures the texture, geometry, or both styles of user-provided style images. At the core of StyleSculptor is a novel Style Disentangled Attention (SD-Attn) module, which establishes a dynamic interaction between the input content image and style image for style-guided 3D asset generation via a cross-3D attention mechanism, enabling stable feature fusion and effective style-guided generation. To alleviate semantic content leakage, we also introduce a style-disentangled feature selection strategy within the SD-Attn module, which leverages the variance of 3D feature patches to disentangle style- and content-significant channels, allowing selective feature injection within the attention framework. With SD-Attn, the network can dynamically compute texture-, geometry-, or both-guided features to steer the 3D generation process. Built upon this, we further propose the Style Guided Control (SGC) mechanism, which enables exclusive geometry- or texture-only stylization, as well as adjustable style intensity control. Extensive experiments demonstrate that StyleSculptor outperforms existing baseline methods in producing high-fidelity 3D assets.




Abstract:Tokens are basic elements in the datasets for LLM training. It is well-known that many tokens representing Chinese phrases in the vocabulary of GPT (4o/4o-mini/o1/o3/4.5/4.1/o4-mini) are indicating contents like pornography or online gambling. Based on this observation, our goal is to locate Polluted Chinese (PoC) tokens in LLMs and study the relationship between PoC tokens' existence and training data. (1) We give a formal definition and taxonomy of PoC tokens based on the GPT's vocabulary. (2) We build a PoC token detector via fine-tuning an LLM to label PoC tokens in vocabularies by considering each token's both semantics and related contents from the search engines. (3) We study the speculation on the training data pollution via PoC tokens' appearances (token ID). Experiments on GPT and other 23 LLMs indicate that tokens widely exist while GPT's vocabulary behaves the worst: more than 23% long Chinese tokens (i.e., a token with more than two Chinese characters) are either porn or online gambling. We validate the accuracy of our speculation method on famous pre-training datasets like C4 and Pile. Then, considering GPT-4o, we speculate that the ratio of "Yui Hatano" related webpages in GPT-4o's training data is around 0.5%.
Abstract:Personalized search ranking systems are critical for driving engagement and revenue in modern e-commerce and short-video platforms. While existing methods excel at estimating users' broad interests based on the filtered historical behaviors, they typically under-exploit explicit alignment between a user's real-time intent (represented by the user query) and their past actions. In this paper, we propose DiffusionGS, a novel and scalable approach powered by generative models. Our key insight is that user queries can serve as explicit intent anchors to facilitate the extraction of users' immediate interests from long-term, noisy historical behaviors. Specifically, we formulate interest extraction as a conditional denoising task, where the user's query guides a conditional diffusion process to produce a robust, user intent-aware representation from their behavioral sequence. We propose the User-aware Denoising Layer (UDL) to incorporate user-specific profiles into the optimization of attention distribution on the user's past actions. By reframing queries as intent priors and leveraging diffusion-based denoising, our method provides a powerful mechanism for capturing dynamic user interest shifts. Extensive offline and online experiments demonstrate the superiority of DiffusionGS over state-of-the-art methods.
Abstract:Recommender systems (RecSys) are essential for online platforms, providing personalized suggestions to users within a vast sea of information. Self-supervised graph learning seeks to harness high-order collaborative filtering signals through unsupervised augmentation on the user-item bipartite graph, primarily leveraging a multi-task learning framework that includes both supervised recommendation loss and self-supervised contrastive loss. However, this separate design introduces additional graph convolution processes and creates inconsistencies in gradient directions due to disparate losses, resulting in prolonged training times and sub-optimal performance. In this study, we introduce a unified framework of Supervised Graph Contrastive Learning for recommendation (SGCL) to address these issues. SGCL uniquely combines the training of recommendation and unsupervised contrastive losses into a cohesive supervised contrastive learning loss, aligning both tasks within a single optimization direction for exceptionally fast training. Extensive experiments on three real-world datasets show that SGCL outperforms state-of-the-art methods, achieving superior accuracy and efficiency.