Abstract:Active Simultaneous Localization and Mapping (Active SLAM) involves the strategic planning and precise control of a robotic system's movement in order to construct a highly accurate and comprehensive representation of its surrounding environment, which has garnered significant attention within the research community. While the current methods demonstrate efficacy in small and controlled settings, they face challenges when applied to large-scale and diverse environments, marked by extended periods of exploration and suboptimal paths of discovery. In this paper, we propose MA-SLAM, a Map-Aware Active SLAM system based on Deep Reinforcement Learning (DRL), designed to address the challenge of efficient exploration in large-scale environments. In pursuit of this objective, we put forward a novel structured map representation. By discretizing the spatial data and integrating the boundary points and the historical trajectory, the structured map succinctly and effectively encapsulates the visited regions, thereby serving as input for the deep reinforcement learning based decision module. Instead of sequentially predicting the next action step within the decision module, we have implemented an advanced global planner to optimize the exploration path by leveraging long-range target points. We conducted experiments in three simulation environments and deployed in a real unmanned ground vehicle (UGV), the results demonstrate that our approach significantly reduces both the duration and distance of exploration compared with state-of-the-art methods.
Abstract:Spiking Neural Networks (SNNs) promise energy-efficient, sparse, biologically inspired computation. Training them with Backpropagation Through Time (BPTT) and surrogate gradients achieves strong performance but remains biologically implausible. Equilibrium Propagation (EP) provides a more local and biologically grounded alternative. However, existing EP frameworks, primarily based on deterministic neurons, either require complex mechanisms to handle discontinuities in spiking dynamics or fail to scale beyond simple visual tasks. Inspired by the stochastic nature of biological spiking mechanism and recent hardware trends, we propose a stochastic EP framework that integrates probabilistic spiking neurons into the EP paradigm. This formulation smoothens the optimization landscape, stabilizes training, and enables scalable learning in deep convolutional spiking convergent recurrent neural networks (CRNNs). We provide theoretical guarantees showing that the proposed stochastic EP dynamics approximate deterministic EP under mean-field theory, thereby inheriting its underlying theoretical guarantees. The proposed framework narrows the gap to both BPTT-trained SNNs and EP-trained non-spiking CRNNs in vision benchmarks while preserving locality, highlighting stochastic EP as a promising direction for neuromorphic and on-chip learning.
Abstract:Background: Identifying new indications for approved drugs is a complex and time-consuming process that requires extensive knowledge of pharmacology, clinical data, and advanced computational methods. Recently, deep learning (DL) methods have shown their capability for the accurate prediction of drug repositioning. However, implementing DL-based modeling requires in-depth domain knowledge and proficient programming skills. Results: In this application, we introduce DeepDR, the first integrated platform that combines a variety of established DL-based models for disease- and target-specific drug repositioning tasks. DeepDR leverages invaluable experience to recommend candidate drugs, which covers more than 15 networks and a comprehensive knowledge graph that includes 5.9 million edges across 107 types of relationships connecting drugs, diseases, proteins/genes, pathways, and expression from six existing databases and a large scientific corpus of 24 million PubMed publications. Additionally, the recommended results include detailed descriptions of the recommended drugs and visualize key patterns with interpretability through a knowledge graph. Conclusion: DeepDR is free and open to all users without the requirement of registration. We believe it can provide an easy-to-use, systematic, highly accurate, and computationally automated platform for both experimental and computational scientists.
Abstract:We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis. Building on the recent success of autoregressive modeling in both vision and language, our purely discrete approach jointly captures spatial and temporal dependencies within a single architecture. This unified design naturally supports a variety of generation tasks such as text-to-image, text-to-video, image-to-video, and long interactive video synthesis via straightforward temporal autoregression. Extensive experiments demonstrate that InfinityStar scores 83.74 on VBench, outperforming all autoregressive models by large margins, even surpassing some diffusion competitors like HunyuanVideo. Without extra optimizations, our model generates a 5s, 720p video approximately 10x faster than leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial level 720p videos. We release all code and models to foster further research in efficient, high-quality video generation.




Abstract:Microscopy is a primary source of information on materials structure and functionality at nanometer and atomic scales. The data generated is often well-structured, enriched with metadata and sample histories, though not always consistent in detail or format. The adoption of Data Management Plans (DMPs) by major funding agencies promotes preservation and access. However, deriving insights remains difficult due to the lack of standardized code ecosystems, benchmarks, and integration strategies. As a result, data usage is inefficient and analysis time is extensive. In addition to post-acquisition analysis, new APIs from major microscope manufacturers enable real-time, ML-based analytics for automated decision-making and ML-agent-controlled microscope operation. Yet, a gap remains between the ML and microscopy communities, limiting the impact of these methods on physics, materials discovery, and optimization. Hackathons help bridge this divide by fostering collaboration between ML researchers and microscopy experts. They encourage the development of novel solutions that apply ML to microscopy, while preparing a future workforce for instrumentation, materials science, and applied ML. This hackathon produced benchmark datasets and digital twins of microscopes to support community growth and standardized workflows. All related code is available at GitHub: https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/tree/1.0.0.1
Abstract:This paper presents DetailFlow, a coarse-to-fine 1D autoregressive (AR) image generation method that models images through a novel next-detail prediction strategy. By learning a resolution-aware token sequence supervised with progressively degraded images, DetailFlow enables the generation process to start from the global structure and incrementally refine details. This coarse-to-fine 1D token sequence aligns well with the autoregressive inference mechanism, providing a more natural and efficient way for the AR model to generate complex visual content. Our compact 1D AR model achieves high-quality image synthesis with significantly fewer tokens than previous approaches, i.e. VAR/VQGAN. We further propose a parallel inference mechanism with self-correction that accelerates generation speed by approximately 8x while reducing accumulation sampling error inherent in teacher-forcing supervision. On the ImageNet 256x256 benchmark, our method achieves 2.96 gFID with 128 tokens, outperforming VAR (3.3 FID) and FlexVAR (3.05 FID), which both require 680 tokens in their AR models. Moreover, due to the significantly reduced token count and parallel inference mechanism, our method runs nearly 2x faster inference speed compared to VAR and FlexVAR. Extensive experimental results demonstrate DetailFlow's superior generation quality and efficiency compared to existing state-of-the-art methods.




Abstract:The Retrieval-Augmented Generation (RAG) framework introduces a retrieval module to dynamically inject retrieved information into the input context of large language models (LLMs), and has demonstrated significant success in various NLP tasks. However, the current study points out that there is a preference gap between retrievers and LLMs in the RAG framework, which limit the further improvement of system performance. Some highly relevant passages may interfere with LLM reasoning because they contain complex or contradictory information; while some indirectly related or even inaccurate content may help LLM generate more accurate answers by providing suggestive information or logical clues. To solve this, we propose GainRAG, a novel approach that aligns the retriever's and LLM's preferences by defining a new metric, "gain", which measure how well an input passage contributes to correct outputs. Specifically, we propose a method to estimate these gain signals and train a middleware that aligns the preferences of the retriever and the LLM using only limited data. In addition, we introduce a pseudo-passage strategy to mitigate degradation. The experimental results on 6 datasets verify the effectiveness of GainRAG.
Abstract:Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
Abstract:Future wireless networks are envisioned to employ multiple-input multiple-output (MIMO) transmissions with large array sizes, and therefore, the adoption of complexity-scalable transceiver becomes important. In this paper, we propose a novel complexity-scalable transceiver design for MIMO systems exploiting bit-interleaved coded modulation (termed MIMO-BICM systems). The proposed scheme leverages the channel bidiagonalization decomposition (CBD), based on which an optimization framework for the precoder and post-processor is developed for maximizing the mutual information (MI) with finite-alphabet inputs. Particularly, we unveil that the desired precoder and post-processor behave distinctively with respect to the operating signal-to-noise ratio (SNR), where the equivalent channel condition number (ECCN) serves as an effective indicator for the overall achievable rate performance. Specifically, at low SNRs, diagonal transmission with a large ECCN is advantageous, while at high SNRs, uniform subchannel gains with a small ECCN are preferred. This allows us to further propose a low-complexity generalized parallel CBD design (GP-CBD) based on Givens rotation according to a well-approximated closed-form performance metric on the achievable rates that takes into account the insights from the ECCN. Numerical results validate the superior performance of the proposed scheme in terms of achievable rate and bit error rate (BER), compared to state-of-the-art designs across various modulation and coding schemes (MCSs).




Abstract:Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.