The rapid advancement of artificial intelligence (AI) has been marked by the large language models exhibiting human-like intelligence. However, these models also present unprecedented challenges to energy consumption and environmental sustainability. One promising solution is to revisit analogue computing, a technique that predates digital computing and exploits emerging analogue electronic devices, such as resistive memory, which features in-memory computing, high scalability, and nonvolatility. However, analogue computing still faces the same challenges as before: programming nonidealities and expensive programming due to the underlying devices physics. Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning to optimize the topology of a randomly weighted analogue resistive memory neural network. Software-wise, the topology of a randomly weighted neural network is optimized by pruning connections rather than precisely tuning resistive memory weights. Hardware-wise, we reveal the physical origin of the programming stochasticity using transmission electron microscopy, which is leveraged for large-scale and low-cost implementation of an overparameterized random neural network containing high-performance sub-networks. We implemented the co-design on a 40nm 256K resistive memory macro, observing 17.3% and 19.9% accuracy improvements in image and audio classification on FashionMNIST and Spoken digits datasets, as well as 9.8% (2%) improvement in PR (ROC) in image segmentation on DRIVE datasets, respectively. This is accompanied by 82.1%, 51.2%, and 99.8% improvement in energy efficiency thanks to analogue in-memory computing. By embracing the intrinsic stochasticity and in-memory computing, this work may solve the biggest obstacle of analogue computing systems and thus unleash their immense potential for next-generation AI hardware.
This paper presents a new text-guided technique for generating 3D shapes. The technique leverages a hybrid 3D shape representation, namely EXIM, combining the strengths of explicit and implicit representations. Specifically, the explicit stage controls the topology of the generated 3D shapes and enables local modifications, whereas the implicit stage refines the shape and paints it with plausible colors. Also, the hybrid approach separates the shape and color and generates color conditioned on shape to ensure shape-color consistency. Unlike the existing state-of-the-art methods, we achieve high-fidelity shape generation from natural-language descriptions without the need for time-consuming per-shape optimization or reliance on human-annotated texts during training or test-time optimization. Further, we demonstrate the applicability of our approach to generate indoor scenes with consistent styles using text-induced 3D shapes. Through extensive experiments, we demonstrate the compelling quality of our results and the high coherency of our generated shapes with the input texts, surpassing the performance of existing methods by a significant margin. Codes and models are released at https://github.com/liuzhengzhe/EXIM.
Text-to-3D generation has made remarkable progress recently, particularly with methods based on Score Distillation Sampling (SDS) that leverages pre-trained 2D diffusion models. While the usage of classifier-free guidance is well acknowledged to be crucial for successful optimization, it is considered an auxiliary trick rather than the most essential component. In this paper, we re-evaluate the role of classifier-free guidance in score distillation and discover a surprising finding: the guidance alone is enough for effective text-to-3D generation tasks. We name this method Classifier Score Distillation (CSD), which can be interpreted as using an implicit classification model for generation. This new perspective reveals new insights for understanding existing techniques. We validate the effectiveness of CSD across a variety of text-to-3D tasks including shape generation, texture synthesis, and shape editing, achieving results superior to those of state-of-the-art methods. Our project page is https://xinyu-andy.github.io/Classifier-Score-Distillation
Deriving reliable region-word alignment from image-text pairs is critical to learn object-level vision-language representations for open-vocabulary object detection. Existing methods typically rely on pre-trained or self-trained vision-language models for alignment, which are prone to limitations in localization accuracy or generalization capabilities. In this paper, we propose CoDet, a novel approach that overcomes the reliance on pre-aligned vision-language space by reformulating region-word alignment as a co-occurring object discovery problem. Intuitively, by grouping images that mention a shared concept in their captions, objects corresponding to the shared concept shall exhibit high co-occurrence among the group. CoDet then leverages visual similarities to discover the co-occurring objects and align them with the shared concept. Extensive experiments demonstrate that CoDet has superior performances and compelling scalability in open-vocabulary detection, e.g., by scaling up the visual backbone, CoDet achieves 37.0 $\text{AP}^m_{novel}$ and 44.7 $\text{AP}^m_{all}$ on OV-LVIS, surpassing the previous SoTA by 4.2 $\text{AP}^m_{novel}$ and 9.8 $\text{AP}^m_{all}$. Code is available at https://github.com/CVMI-Lab/CoDet.
In this paper, we propose a novel data-pruning approach called moving-one-sample-out (MoSo), which aims to identify and remove the least informative samples from the training set. The core insight behind MoSo is to determine the importance of each sample by assessing its impact on the optimal empirical risk. This is achieved by measuring the extent to which the empirical risk changes when a particular sample is excluded from the training set. Instead of using the computationally expensive leaving-one-out-retraining procedure, we propose an efficient first-order approximator that only requires gradient information from different training stages. The key idea behind our approximation is that samples with gradients that are consistently aligned with the average gradient of the training set are more informative and should receive higher scores, which could be intuitively understood as follows: if the gradient from a specific sample is consistent with the average gradient vector, it implies that optimizing the network using the sample will yield a similar effect on all remaining samples. Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios and achieves satisfactory performance across various settings.
In comparison to conventional RGB cameras, the superior temporal resolution of event cameras allows them to capture rich information between frames, making them prime candidates for object tracking. Yet in practice, despite their theoretical advantages, the body of work on event-based multi-object tracking (MOT) remains in its infancy, especially in real-world settings where events from complex background and camera motion can easily obscure the true target motion. In this work, an event-based multi-object tracker, called SpikeMOT, is presented to address these challenges. SpikeMOT leverages spiking neural networks to extract sparse spatiotemporal features from event streams associated with objects. The resulting spike train representations are used to track the object movement at high frequency, while a simultaneous object detector provides updated spatial information of these objects at an equivalent frame rate. To evaluate the effectiveness of SpikeMOT, we introduce DSEC-MOT, the first large-scale event-based MOT benchmark incorporating fine-grained annotations for objects experiencing severe occlusions, frequent trajectory intersections, and long-term re-identification in real-world contexts. Extensive experiments employing DSEC-MOT and another event-based dataset, named FE240hz, demonstrate SpikeMOT's capability to achieve high tracking accuracy amidst challenging real-world scenarios, advancing the state-of-the-art in event-based multi-object tracking.
Synthesizing realistic videos according to a given speech is still an open challenge. Previous works have been plagued by issues such as inaccurate lip shape generation and poor image quality. The key reason is that only motions and appearances on limited facial areas (e.g., lip area) are mainly driven by the input speech. Therefore, directly learning a mapping function from speech to the entire head image is prone to ambiguity, particularly when using a short video for training. We thus propose a decomposition-synthesis-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance to facilitate effective learning from limited training data, resulting in the generation of natural-looking videos. First, given a fixed head pose (i.e., canonical space), we present a speech-driven implicit model for lip image generation which concentrates on learning speech-sensitive motion and appearance. Next, to model the major speech-insensitive motion (i.e., head movement), we introduce a geometry-aware mutual explicit mapping (GAMEM) module that establishes geometric mappings between different head poses. This allows us to paste generated lip images at the canonical space onto head images with arbitrary poses and synthesize talking videos with natural head movements. In addition, a Blend-Net and a contrastive sync loss are introduced to enhance the overall synthesis performance. Quantitative and qualitative results on three benchmarks demonstrate that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization. Code: https://github.com/CVMI-Lab/Speech2Lip.
In this work, we focus on synthesizing high-quality textures on 3D meshes. We present Point-UV diffusion, a coarse-to-fine pipeline that marries the denoising diffusion model with UV mapping to generate 3D consistent and high-quality texture images in UV space. We start with introducing a point diffusion model to synthesize low-frequency texture components with our tailored style guidance to tackle the biased color distribution. The derived coarse texture offers global consistency and serves as a condition for the subsequent UV diffusion stage, aiding in regularizing the model to generate a 3D consistent UV texture image. Then, a UV diffusion model with hybrid conditions is developed to enhance the texture fidelity in the 2D UV space. Our method can process meshes of any genus, generating diversified, geometry-compatible, and high-fidelity textures. Code is available at https://cvmi-lab.github.io/Point-UV-Diffusion
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset. This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories. A key factor for the recent progress in 2D open-world perception is the availability of large-scale image-text pairs from the Internet, which cover a wide range of vocabulary concepts. However, this success is hard to replicate in 3D scenarios due to the scarcity of 3D-text pairs. To address this challenge, we propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for multi-view images of 3D scenes. This allows us to establish explicit associations between 3D shapes and semantic-rich captions. Moreover, to enhance the fine-grained visual-semantic representation learning from captions for object-level categorization, we design hierarchical point-caption association methods to learn semantic-aware embeddings that exploit the 3D geometry between 3D points and multi-view images. In addition, to tackle the localization challenge for novel classes in the open-world setting, we develop debiased instance localization, which involves training object grouping modules on unlabeled data using instance-level pseudo supervision. This significantly improves the generalization capabilities of instance grouping and thus the ability to accurately locate novel objects. We conduct extensive experiments on 3D semantic, instance, and panoptic segmentation tasks, covering indoor and outdoor scenes across three datasets. Our method outperforms baseline methods by a significant margin in semantic segmentation (e.g. 34.5%$\sim$65.3%), instance segmentation (e.g. 21.8%$\sim$54.0%) and panoptic segmentation (e.g. 14.7%$\sim$43.3%). Code will be available.