Abstract:We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
Abstract:We present NextFlow, a unified decoder-only autoregressive transformer trained on 6 trillion interleaved text-image discrete tokens. By leveraging a unified vision representation within a unified autoregressive architecture, NextFlow natively activates multimodal understanding and generation capabilities, unlocking abilities of image editing, interleaved content and video generation. Motivated by the distinct nature of modalities - where text is strictly sequential and images are inherently hierarchical - we retain next-token prediction for text but adopt next-scale prediction for visual generation. This departs from traditional raster-scan methods, enabling the generation of 1024x1024 images in just 5 seconds - orders of magnitude faster than comparable AR models. We address the instabilities of multi-scale generation through a robust training recipe. Furthermore, we introduce a prefix-tuning strategy for reinforcement learning. Experiments demonstrate that NextFlow achieves state-of-the-art performance among unified models and rivals specialized diffusion baselines in visual quality.
Abstract:Visual generation is dominated by three paradigms: AutoRegressive (AR), diffusion, and Visual AutoRegressive (VAR) models. Unlike AR and diffusion, VARs operate on heterogeneous input structures across their generation steps, which creates severe asynchronous policy conflicts. This issue becomes particularly acute in reinforcement learning (RL) scenarios, leading to unstable training and suboptimal alignment. To resolve this, we propose a novel framework to enhance Group Relative Policy Optimization (GRPO) by explicitly managing these conflicts. Our method integrates three synergistic components: 1) a stabilizing intermediate reward to guide early-stage generation; 2) a dynamic time-step reweighting scheme for precise credit assignment; and 3) a novel mask propagation algorithm, derived from principles of Reward Feedback Learning (ReFL), designed to isolate optimization effects both spatially and temporally. Our approach demonstrates significant improvements in sample quality and objective alignment over the vanilla GRPO baseline, enabling robust and effective optimization for VAR models.
Abstract:Existing audio language models typically rely on task-specific fine-tuning to accomplish particular audio tasks. In contrast, humans are able to generalize to new audio tasks with only a few examples or simple instructions. GPT-3 has shown that scaling next-token prediction pretraining enables strong generalization capabilities in text, and we believe this paradigm is equally applicable to the audio domain. By scaling MiMo-Audio's pretraining data to over one hundred million of hours, we observe the emergence of few-shot learning capabilities across a diverse set of audio tasks. We develop a systematic evaluation of these capabilities and find that MiMo-Audio-7B-Base achieves SOTA performance on both speech intelligence and audio understanding benchmarks among open-source models. Beyond standard metrics, MiMo-Audio-7B-Base generalizes to tasks absent from its training data, such as voice conversion, style transfer, and speech editing. MiMo-Audio-7B-Base also demonstrates powerful speech continuation capabilities, capable of generating highly realistic talk shows, recitations, livestreaming and debates. At the post-training stage, we curate a diverse instruction-tuning corpus and introduce thinking mechanisms into both audio understanding and generation. MiMo-Audio-7B-Instruct achieves open-source SOTA on audio understanding benchmarks (MMSU, MMAU, MMAR, MMAU-Pro), spoken dialogue benchmarks (Big Bench Audio, MultiChallenge Audio) and instruct-TTS evaluations, approaching or surpassing closed-source models. Model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-Audio.




Abstract:Embodied intelligence, a grand challenge in artificial intelligence, is fundamentally constrained by the limited spatial understanding and reasoning capabilities of current models. Prevailing efforts to address this through enhancing Vision-Language Models (VLMs) are trapped in a dilemma: template-based datasets are scalable but structurally rigid, while manual annotation is linguistically diverse but unscalable and, critically, computationally imprecise. We introduce SPRITE, a novel framework that overcomes this dilemma by leveraging simulators and large models to programmatically synthesize scalable, diverse, and high-quality spatial reasoning data. The core innovation of SPRITE is to reframe ground-truth generation as a code-generation task. We utilize LLMs to compile complex spatial questions into executable programs, which are then verified against high-precision scene meta-information extracted from simulators. This ensures our ground truth is both computationally precise and verifiable, while the generative power of LLMs provides vast linguistic diversity. Leveraging this pipeline, we have curated a dataset encompassing 3 simulators, 11k+ scenes, and 300k+ image/video instruction-tuning pairs. We demonstrate that a VLM trained on our data achieves significant performance gains on multiple spatial benchmarks and outperforms other open-source datasets of equivalent size. Furthermore, a scalability analysis confirms our hypothesis that overcoming the low-diversity nature of traditional template methods is essential for building robust, generalizable spatial intelligence. We will make the SPRITE framework code and the full 300k+ dataset publicly available to facilitate future research in spatial intelligence.
Abstract:Recent spatial intelligence approaches typically attach 3D cues to 2D reasoning pipelines or couple MLLMs with black-box reconstruction modules, leading to weak spatial consistency, limited viewpoint diversity, and evidence chains that cannot be traced back to supporting views. Frameworks for "thinking with images" (e.g., ChatGPT-o3 and DeepEyes) show that stepwise multimodal reasoning can emerge by interleaving hypothesis formation with active acquisition of visual evidence, but they do not address three key challenges in spatial Chain-of-Thought (CoT): building global space perception under strict token budgets, explicitly associating 3D hypotheses with video frames for verification, and designing spatially grounded rewards for reinforcement learning. To address these issues, we present EagleVision, a dual-stage framework for progressive spatial cognition through macro perception and micro verification. In the macro perception stage, EagleVision employs a semantics-perspective-fusion determinantal point process (SPF-DPP) to select a compact set of geometry- and semantics-aware keyframes from long videos under a fixed token budget. In the micro verification stage, we formalize spatial CoT as BEV-grounded pose querying: the agent iteratively predicts poses on a BEV plane, retrieves the nearest real frames, and is trained purely by reinforcement learning with a spatial grounding reward that scores the consistency between predicted poses and observed views. On VSI-Bench, EagleVision achieves state-of-the-art performance among open-source vision-language models, demonstrating strong and generalizable spatial understanding.
Abstract:The rapid advancement of Multi-modal Large Language Models (MLLMs) has expanded their capabilities beyond high-level vision tasks. Nevertheless, their potential for Document Image Quality Assessment (DIQA) remains underexplored. To bridge this gap, we propose Q-Doc, a three-tiered evaluation framework for systematically probing DIQA capabilities of MLLMs at coarse, middle, and fine granularity levels. a) At the coarse level, we instruct MLLMs to assign quality scores to document images and analyze their correlation with Quality Annotations. b) At the middle level, we design distortion-type identification tasks, including single-choice and multi-choice tests for multi-distortion scenarios. c) At the fine level, we introduce distortion-severity assessment where MLLMs classify distortion intensity against human-annotated references. Our evaluation demonstrates that while MLLMs possess nascent DIQA abilities, they exhibit critical limitations: inconsistent scoring, distortion misidentification, and severity misjudgment. Significantly, we show that Chain-of-Thought (CoT) prompting substantially enhances performance across all levels. Our work provides a benchmark for DIQA capabilities in MLLMs, revealing pronounced deficiencies in their quality perception and promising pathways for enhancement. The benchmark and code are publicly available at: https://github.com/cydxf/Q-Doc.




Abstract:Weakly supervised 3D instance segmentation is essential for 3D scene understanding, especially as the growing scale of data and high annotation costs associated with fully supervised approaches. Existing methods primarily rely on two forms of weak supervision: one-thing-one-click annotations and bounding box annotations, both of which aim to reduce labeling efforts. However, these approaches still encounter limitations, including labor-intensive annotation processes, high complexity, and reliance on expert annotators. To address these challenges, we propose \textbf{DBGroup}, a two-stage weakly supervised 3D instance segmentation framework that leverages scene-level annotations as a more efficient and scalable alternative. In the first stage, we introduce a Dual-Branch Point Grouping module to generate pseudo labels guided by semantic and mask cues extracted from multi-view images. To further improve label quality, we develop two refinement strategies: Granularity-Aware Instance Merging and Semantic Selection and Propagation. The second stage involves multi-round self-training on an end-to-end instance segmentation network using the refined pseudo-labels. Additionally, we introduce an Instance Mask Filter strategy to address inconsistencies within the pseudo labels. Extensive experiments demonstrate that DBGroup achieves competitive performance compared to sparse-point-level supervised 3D instance segmentation methods, while surpassing state-of-the-art scene-level supervised 3D semantic segmentation approaches. Code is available at https://github.com/liuxuexun/DBGroup.
Abstract:Cross-modal hashing (CMH) facilitates efficient retrieval across different modalities (e.g., image and text) by encoding data into compact binary representations. While recent methods have achieved remarkable performance, they often rely heavily on fully annotated datasets, which are costly and labor-intensive to obtain. In real-world scenarios, particularly in multi-label datasets, label noise is prevalent and severely degrades retrieval performance. Moreover, existing CMH approaches typically overlook the partial semantic overlaps inherent in multi-label data, limiting their robustness and generalization. To tackle these challenges, we propose a novel framework named Semantic-Consistent Bidirectional Contrastive Hashing (SCBCH). The framework comprises two complementary modules: (1) Cross-modal Semantic-Consistent Classification (CSCC), which leverages cross-modal semantic consistency to estimate sample reliability and reduce the impact of noisy labels; (2) Bidirectional Soft Contrastive Hashing (BSCH), which dynamically generates soft contrastive sample pairs based on multi-label semantic overlap, enabling adaptive contrastive learning between semantically similar and dissimilar samples across modalities. Extensive experiments on four widely-used cross-modal retrieval benchmarks validate the effectiveness and robustness of our method, consistently outperforming state-of-the-art approaches under noisy multi-label conditions.




Abstract:Generative Flow Networks (GFlowNets) have emerged as a powerful tool for generating diverse and high-reward structured objects by learning to sample from a distribution proportional to a given reward function. Unlike conventional reinforcement learning (RL) approaches that prioritize optimization of a single trajectory, GFlowNets seek to balance diversity and reward by modeling the entire trajectory distribution. This capability makes them especially suitable for domains such as molecular design and combinatorial optimization. However, existing GFlowNets sampling strategies tend to overexplore and struggle to consistently generate high-reward samples, particularly in large search spaces with sparse high-reward regions. Therefore, improving the probability of generating high-reward samples without sacrificing diversity remains a key challenge under this premise. In this work, we integrate an enhanced Monte Carlo Tree Search (MCTS) into the GFlowNets sampling process, using MCTS-based policy evaluation to guide the generation toward high-reward trajectories and Polynomial Upper Confidence Trees (PUCT) to balance exploration and exploitation adaptively, and we introduce a controllable mechanism to regulate the degree of greediness. Our method enhances exploitation without sacrificing diversity by dynamically balancing exploration and reward-driven guidance. The experimental results show that our method can not only accelerate the speed of discovering high-reward regions but also continuously generate high-reward samples, while preserving the diversity of the generative distribution. All implementations are available at https://github.com/ZRNB/MG2FlowNet.