The Hong Kong University of Science and Technology
Abstract:The evolution of Large Language Models (LLMs) into agentic systems that perform autonomous reasoning and tool use has created significant intellectual property (IP) value. We demonstrate that these systems are highly vulnerable to imitation attacks, where adversaries steal proprietary capabilities by training imitation models on victim outputs. Crucially, existing LLM watermarking techniques fail in this domain because real-world agentic systems often operate as grey boxes, concealing the internal reasoning traces required for verification. This paper presents AGENTWM, the first watermarking framework designed specifically for agentic models. AGENTWM exploits the semantic equivalence of action sequences, injecting watermarks by subtly biasing the distribution of functionally identical tool execution paths. This mechanism allows AGENTWM to embed verifiable signals directly into the visible action trajectory while remaining indistinguishable to users. We develop an automated pipeline to generate robust watermark schemes and a rigorous statistical hypothesis testing procedure for verification. Extensive evaluations across three complex domains demonstrate that AGENTWM achieves high detection accuracy with negligible impact on agent performance. Our results confirm that AGENTWM effectively protects agentic IP against adaptive adversaries, who cannot remove the watermarks without severely degrading the stolen model's utility.
Abstract:Target speaker extraction (TSE) aims to extract the speech of a target speaker from mixtures containing multiple competing speakers. Conventional TSE systems predominantly rely on speaker cues, such as pre-enrolled speech, to identify and isolate the target speaker. However, in many practical scenarios, clean enrollment utterances are unavailable, limiting the applicability of existing approaches. In this work, we propose DAE-TSE, a keyword-guided TSE framework that specifies the target speaker through distinct keywords they utter. By leveraging keywords (i.e., partial transcriptions) as cues, our approach provides a flexible and practical alternative to enrollment-based TSE. DAE-TSE follows the Detect-Attend-Extract (DAE) paradigm: it first detects the presence of the given keywords, then attends to the corresponding speaker based on the keyword content, and finally extracts the target speech. Experimental results demonstrate that DAE-TSE outperforms standard TSE systems that rely on clean enrollment speech. To the best of our knowledge, this is the first study to utilize partial transcription as a cue for specifying the target speaker in TSE, offering a flexible and practical solution for real-world scenarios. Our code and demo page are now publicly available.
Abstract:We introduce Baichuan-M3, a medical-enhanced large language model engineered to shift the paradigm from passive question-answering to active, clinical-grade decision support. Addressing the limitations of existing systems in open-ended consultations, Baichuan-M3 utilizes a specialized training pipeline to model the systematic workflow of a physician. Key capabilities include: (i) proactive information acquisition to resolve ambiguity; (ii) long-horizon reasoning that unifies scattered evidence into coherent diagnoses; and (iii) adaptive hallucination suppression to ensure factual reliability. Empirical evaluations demonstrate that Baichuan-M3 achieves state-of-the-art results on HealthBench, the newly introduced HealthBench-Hallu and ScanBench, significantly outperforming GPT-5.2 in clinical inquiry, advisory and safety. The models are publicly available at https://huggingface.co/collections/baichuan-inc/baichuan-m3.
Abstract:Recent video generation models largely rely on video autoencoders that compress pixel-space videos into latent representations. However, existing video autoencoders suffer from three major limitations: (1) fixed-rate compression that wastes tokens on simple videos, (2) inflexible CNN architectures that prevent variable-length latent modeling, and (3) deterministic decoders that struggle to recover appropriate details from compressed latents. To address these issues, we propose One-Dimensional Diffusion Video Autoencoder (One-DVA), a transformer-based framework for adaptive 1D encoding and diffusion-based decoding. The encoder employs query-based vision transformers to extract spatiotemporal features and produce latent representations, while a variable-length dropout mechanism dynamically adjusts the latent length. The decoder is a pixel-space diffusion transformer that reconstructs videos with the latents as input conditions. With a two-stage training strategy, One-DVA achieves performance comparable to 3D-CNN VAEs on reconstruction metrics at identical compression ratios. More importantly, it supports adaptive compression and thus can achieve higher compression ratios. To better support downstream latent generation, we further regularize the One-DVA latent distribution for generative modeling and fine-tune its decoder to mitigate artifacts caused by the generation process.
Abstract:Hybrid planner switching framework (HPSF) for autonomous driving needs to reconcile high-speed driving efficiency with safe maneuvering in dense traffic. Existing HPSF methods often fail to make reliable mode transitions or sustain efficient driving in congested environments, owing to heuristic scene recognition and low-frequency control updates. To address the limitation, this paper proposes LAP, a large language model (LLM) driven, adaptive planning method, which switches between high-speed driving in low-complexity scenes and precise driving in high-complexity scenes, enabling high qualities of trajectory generation through confined gaps. This is achieved by leveraging LLM for scene understanding and integrating its inference into the joint optimization of mode configuration and motion planning. The joint optimization is solved using tree-search model predictive control and alternating minimization. We implement LAP by Python in Robot Operating System (ROS). High-fidelity simulation results show that the proposed LAP outperforms other benchmarks in terms of both driving time and success rate.
Abstract:Parameter tuning is a powerful approach to enhance adaptability in model predictive control (MPC) motion planners. However, existing methods typically operate in a myopic fashion that only evaluates executed actions, leading to inefficient parameter updates due to the sparsity of failure events (e.g., obstacle nearness or collision). To cope with this issue, we propose to extend evaluation from executed to non-executed actions, yielding a hierarchical proactive tuning (HPTune) framework that combines both a fast-level tuning and a slow-level tuning. The fast one adopts risk indicators of predictive closing speed and predictive proximity distance, and the slow one leverages an extended evaluation loss for closed-loop backpropagation. Additionally, we integrate HPTune with the Doppler LiDAR that provides obstacle velocities apart from position-only measurements for enhanced motion predictions, thus facilitating the implementation of HPTune. Extensive experiments on high-fidelity simulator demonstrate that HPTune achieves efficient MPC tuning and outperforms various baseline schemes in complex environments. It is found that HPTune enables situation-tailored motion planning by formulating a safe, agile collision avoidance strategy.
Abstract:Mortgage default prediction is a core task in financial risk management, and machine learning models are increasingly used to estimate default probabilities and provide interpretable signals for downstream decisions. In real-world mortgage datasets, however, three factors frequently undermine evaluation validity and deployment reliability: ambiguity in default labeling, severe class imbalance, and information leakage arising from temporal structure and post-event variables. We compare multiple machine learning approaches for mortgage default prediction using a real-world loan-level dataset, with emphasis on leakage control and imbalance handling. We employ leakage-aware feature selection, a strict temporal split that constrains both origination and reporting periods, and controlled downsampling of the majority class. Across multiple positive-to-negative ratios, performance remains stable, and an AutoML approach (AutoGluon) achieves the strongest AUROC among the models evaluated. An extended and pedagogical version of this work will appear as a book chapter.
Abstract:This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.
Abstract:While large language models (LLMs) have substantially improved Text-to-SQL generation, a pronounced gap remains between AI systems and human experts on challenging benchmarks such as BIRD-SQL. We argue this gap stems largely from the prevailing single-pass paradigm, which lacks the iterative reasoning, schema exploration, and error-correction behaviors that humans naturally employ. To address this limitation, we introduce SQL-Trail, a multi-turn reinforcement learning (RL) agentic framework for Text-to-SQL. Rather than producing a query in one shot, SQL-Trail interacts with the database environment and uses execution feedback to iteratively refine its predictions. Our approach centers on two key ideas: (i) an adaptive turn-budget allocation mechanism that scales the agent's interaction depth to match question difficulty, and (ii) a composite reward panel that jointly incentivizes SQL correctness and efficient exploration. Across benchmarks, SQL-Trail sets a new state of the art and delivers strong data efficiency--up to 18x higher than prior single-pass RL state-of-the-art methods. Notably, our 7B and 14B models outperform substantially larger proprietary systems by 5% on average, underscoring the effectiveness of interactive, agentic workflows for robust Text-to-SQL generation.
Abstract:The advances in generative AI have enabled the creation of synthetic audio which is perceptually indistinguishable from real, genuine audio. Although this stellar progress enables many positive applications, it also raises risks of misuse, such as for impersonation, disinformation and fraud. Despite a growing number of open-source fake audio detection codes released through numerous challenges and initiatives, most are tailored to specific competitions, datasets or models. A standardized and unified toolkit that supports the fair benchmarking and comparison of competing solutions with not just common databases, protocols, metrics, but also a shared codebase, is missing. To address this, we propose WeDefense, the first open-source toolkit to support both fake audio detection and localization. Beyond model training, WeDefense emphasizes critical yet often overlooked components: flexible input and augmentation, calibration, score fusion, standardized evaluation metrics, and analysis tools for deeper understanding and interpretation. The toolkit is publicly available at https://github.com/zlin0/wedefense with interactive demos for fake audio detection and localization.