Academic networks in the real world can usually be described by heterogeneous information networks composed of multi-type nodes and relationships. Some existing research on representation learning for homogeneous information networks lacks the ability to explore heterogeneous information networks in heterogeneous information networks. It cannot be applied to heterogeneous information networks. Aiming at the practical needs of effectively identifying and discovering scientific research teams from the academic heterogeneous information network composed of massive and complex scientific and technological big data, this paper proposes a scientific research team identification method based on representation learning of academic heterogeneous information networks. The attention mechanism at node level and meta-path level learns low-dimensional, dense and real-valued vector representations on the basis of retaining the rich topological information of nodes in the network and the semantic information based on meta-paths, and realizes effective identification and discovery of scientific research teams and important team members in academic heterogeneous information networks based on maximizing node influence. Experimental results show that our proposed method outperforms the comparative methods.
Topic modeling has emerged as a valuable tool for discovering patterns and topics within large collections of documents. However, when cross-analysis involves multiple parties, data privacy becomes a critical concern. Federated topic modeling has been developed to address this issue, allowing multiple parties to jointly train models while protecting pri-vacy. However, there are communication and performance challenges in the federated sce-nario. In order to solve the above problems, this paper proposes a method to establish a federated topic model while ensuring the privacy of each node, and use neural network model pruning to accelerate the model, where the client periodically sends the model neu-ron cumulative gradients and model weights to the server, and the server prunes the model. To address different requirements, two different methods are proposed to determine the model pruning rate. The first method involves slow pruning throughout the entire model training process, which has limited acceleration effect on the model training process, but can ensure that the pruned model achieves higher accuracy. This can significantly reduce the model inference time during the inference process. The second strategy is to quickly reach the target pruning rate in the early stage of model training in order to accelerate the model training speed, and then continue to train the model with a smaller model size after reaching the target pruning rate. This approach may lose more useful information but can complete the model training faster. Experimental results show that the federated topic model pruning based on the variational autoencoder proposed in this paper can greatly accelerate the model training speed while ensuring the model's performance.
The entity alignment of science and technology patents aims to link the equivalent entities in the knowledge graph of different science and technology patent data sources. Most entity alignment methods only use graph neural network to obtain the embedding of graph structure or use attribute text description to obtain semantic representation, ignoring the process of multi-information fusion in science and technology patents. In order to make use of the graphic structure and auxiliary information such as the name, description and attribute of the patent entity, this paper proposes an entity alignment method based on the graph convolution network for science and technology patent information fusion. Through the graph convolution network and BERT model, the structure information and entity attribute information of the science and technology patent knowledge graph are embedded and represented to achieve multi-information fusion, thus improving the performance of entity alignment. Experiments on three benchmark data sets show that the proposed method Hit@K The evaluation indicators are better than the existing methods.
Because most of the scientific literature data is unmarked, it makes semantic representation learning based on unsupervised graph become crucial. At the same time, in order to enrich the features of scientific literature, a learning method of semantic representation of scientific literature based on adaptive features and graph neural network is proposed. By introducing the adaptive feature method, the features of scientific literature are considered globally and locally. The graph attention mechanism is used to sum the features of scientific literature with citation relationship, and give each scientific literature different feature weights, so as to better express the correlation between the features of different scientific literature. In addition, an unsupervised graph neural network semantic representation learning method is proposed. By comparing the mutual information between the positive and negative local semantic representation of scientific literature and the global graph semantic representation in the potential space, the graph neural network can capture the local and global information, thus improving the learning ability of the semantic representation of scientific literature. The experimental results show that the proposed learning method of semantic representation of scientific literature based on adaptive feature and graph neural network is competitive on the basis of scientific literature classification, and has achieved good results.
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising. However, IRS faces significant challenges in providing accurate recommendations under limited observations, especially in the context of interactive collaborative filtering. These problems are exacerbated by the cold start problem and data sparsity problem. Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages due to the lack of interaction data. Furthermore, these methods are computationally intractable when applied to non-linear models, limiting their applicability. To address these challenges, we propose a novel method, the Interactive Graph Convolutional Filtering model. Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items. We incorporate variational inference techniques to overcome the computational hurdles posed by non-linear models. Furthermore, we employ Bayesian meta-learning methods to effectively address the cold-start problem and derive theoretical regret bounds for our proposed method, ensuring a robust performance guarantee. Extensive experimental results on three real-world datasets validate our method and demonstrate its superiority over existing baselines.
The storage, management, and application of massive spatio-temporal data are widely applied in various practical scenarios, including public safety. However, due to the unique spatio-temporal distribution characteristics of re-al-world data, most existing methods have limitations in terms of the spatio-temporal proximity of data and load balancing in distributed storage. There-fore, this paper proposes an efficient partitioning method of large-scale public safety spatio-temporal data based on information loss constraints (IFL-LSTP). The IFL-LSTP model specifically targets large-scale spatio-temporal point da-ta by combining the spatio-temporal partitioning module (STPM) with the graph partitioning module (GPM). This approach can significantly reduce the scale of data while maintaining the model's accuracy, in order to improve the partitioning efficiency. It can also ensure the load balancing of distributed storage while maintaining spatio-temporal proximity of the data partitioning results. This method provides a new solution for distributed storage of mas-sive spatio-temporal data. The experimental results on multiple real-world da-tasets demonstrate the effectiveness and superiority of IFL-LSTP.
Graph neural networks (GNNs) have attracted considerable attention from the research community. It is well established that GNNs are usually roughly divided into spatial and spectral methods. Despite that spectral GNNs play an important role in both graph signal processing and graph representation learning, existing studies are biased toward spatial approaches, and there is no comprehensive review on spectral GNNs so far. In this paper, we summarize the recent development of spectral GNNs, including model, theory, and application. Specifically, we first discuss the connection between spatial GNNs and spectral GNNs, which shows that spectral GNNs can capture global information and have better expressiveness and interpretability. Next, we categorize existing spectral GNNs according to the spectrum information they use, \ie, eigenvalues or eigenvectors. In addition, we review major theoretical results and applications of spectral GNNs, followed by a quantitative experiment to benchmark some popular spectral GNNs. Finally, we conclude the paper with some future directions.
Federated learning has emerged as an effective paradigm to achieve privacy-preserving collaborative learning among different parties. Compared to traditional centralized learning that requires collecting data from each party, in federated learning, only the locally trained models or computed gradients are exchanged, without exposing any data information. As a result, it is able to protect privacy to some extent. In recent years, federated learning has become more and more prevalent and there have been many surveys for summarizing related methods in this hot research topic. However, most of them focus on a specific perspective or lack the latest research progress. In this paper, we provide a systematic survey on federated learning, aiming to review the recent advanced federated methods and applications from different aspects. Specifically, this paper includes four major contributions. First, we present a new taxonomy of federated learning in terms of the pipeline and challenges in federated scenarios. Second, we summarize federated learning methods into several categories and briefly introduce the state-of-the-art methods under these categories. Third, we overview some prevalent federated learning frameworks and introduce their features. Finally, some potential deficiencies of current methods and several future directions are discussed.
Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data. A key premise for the remarkable performance of GNNs relies on complete and trustworthy initial graph descriptions (i.e., node features and graph structure), which is often not satisfied since real-world graphs are often incomplete due to various unavoidable factors. In particular, GNNs face greater challenges when both node features and graph structure are incomplete at the same time. The existing methods either focus on feature completion or structure completion. They usually rely on the matching relationship between features and structure, or employ joint learning of node representation and feature (or structure) completion in the hope of achieving mutual benefit. However, recent studies confirm that the mutual interference between features and structure leads to the degradation of GNN performance. When both features and structure are incomplete, the mismatch between features and structure caused by the missing randomness exacerbates the interference between the two, which may trigger incorrect completions that negatively affect node representation. To this end, in this paper we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs, namely T2-GNN. To avoid the interference between features and structure, we separately design feature-level and structure-level teacher models to provide targeted guidance for student model (base GNNs, such as GCN) through distillation. Then we design two personalized methods to obtain well-trained feature and structure teachers. To ensure that the knowledge of the teacher model is comprehensively and effectively distilled to the student model, we further propose a dual distillation mode to enable the student to acquire as much expert knowledge as possible.