Abstract:Recent advances in personalized MLLMs enable effective capture of user-specific concepts, supporting both recognition of personalized concepts and contextual captioning. However, humans typically explore and reason over relations among objects and individuals, transcending surface-level information to achieve more personalized and contextual understanding. To this end, existing methods may face three main limitations: Their training data lacks multi-object sets in which relations among objects are learnable. Building on the limited training data, their models overlook the relations between different personalized concepts and fail to reason over them. Their experiments mainly focus on a single personalized concept, where evaluations are limited to recognition and captioning tasks. To address the limitations, we present a new dataset named ReGraP, consisting of 120 sets of personalized knowledge. Each set includes images, KGs, and CoT QA pairs derived from the KGs, enabling more structured and sophisticated reasoning pathways. We propose ReGraP-LLaVA, an MLLM trained with the corresponding KGs and CoT QA pairs, where soft and hard graph prompting methods are designed to align KGs within the model's semantic space. We establish the ReGraP Benchmark, which contains diverse task types: multiple-choice, fill-in-the-blank, True/False, and descriptive questions in both open- and closed-ended settings. The proposed benchmark is designed to evaluate the relational reasoning and knowledge-connection capability of personalized MLLMs. We conduct experiments on the proposed ReGraP-LLaVA and other competitive MLLMs. Results show that the proposed model not only learns personalized knowledge but also performs relational reasoning in responses, achieving the SoTA performance compared with the competitive methods. All the codes and datasets are released at: https://github.com/xyfyyds/ReGraP.
Abstract:Generative AI has significantly changed industries by enabling text-driven image generation, yet challenges remain in achieving high-resolution outputs that align with fine-grained user preferences. Consequently, multi-round interactions are necessary to ensure the generated images meet expectations. Previous methods enhanced prompts via reward feedback but did not optimize over a multi-round dialogue dataset. In this work, we present a Visual Co-Adaptation (VCA) framework incorporating human-in-the-loop feedback, leveraging a well-trained reward model aligned with human preferences. Using a diverse multi-turn dialogue dataset, our framework applies multiple reward functions, such as diversity, consistency, and preference feedback, while fine-tuning the diffusion model through LoRA, thus optimizing image generation based on user input. We also construct multi-round dialogue datasets of prompts and image pairs aligned with user intent. Experiments demonstrate that our method outperforms state-of-the-art baselines, significantly improving image consistency and alignment with user intent. Our approach consistently surpasses competing models in user satisfaction, especially in multi-turn dialogue scenarios.
Abstract:Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
Abstract:Modern text-to-image generation systems have enabled the creation of remarkably realistic and high-quality visuals, yet they often falter when handling the inherent ambiguities in user prompts. In this work, we present Twin-Co, a framework that leverages synchronized, co-adaptive dialogue to progressively refine image generation. Instead of a static generation process, Twin-Co employs a dynamic, iterative workflow where an intelligent dialogue agent continuously interacts with the user. Initially, a base image is generated from the user's prompt. Then, through a series of synchronized dialogue exchanges, the system adapts and optimizes the image according to evolving user feedback. The co-adaptive process allows the system to progressively narrow down ambiguities and better align with user intent. Experiments demonstrate that Twin-Co not only enhances user experience by reducing trial-and-error iterations but also improves the quality of the generated images, streamlining the creative process across various applications.
Abstract:Large Language Models (LLMs) excel at generating creative narratives but struggle with long-term coherence and emotional consistency in complex stories. To address this, we propose SCORE (Story Coherence and Retrieval Enhancement), a framework integrating three components: 1) Dynamic State Tracking (monitoring objects/characters via symbolic logic), 2) Context-Aware Summarization (hierarchical episode summaries for temporal progression), and 3) Hybrid Retrieval (combining TF-IDF keyword relevance with cosine similarity-based semantic embeddings). The system employs a temporally-aligned Retrieval-Augmented Generation (RAG) pipeline to validate contextual consistency. Evaluations show SCORE achieves 23.6% higher coherence (NCI-2.0 benchmark), 89.7% emotional consistency (EASM metric), and 41.8% fewer hallucinations versus baseline GPT models. Its modular design supports incremental knowledge graph construction for persistent story memory and multi-LLM backend compatibility, offering an explainable solution for industrial-scale narrative systems requiring long-term consistency.
Abstract:This paper devotes to combine the chirp basis function transformation and symplectic coordinates transformation to yield a novel Wigner distribution (WD) associated with the linear canonical transform (LCT), named as the symplectic WD in the LCT domain (SWDL). It incorporates the merits of the symplectic WD (SWD) and the WD in the LCT domain (WDL), achieving stronger capability in the linear frequency-modulated (LFM) signal frequency rate feature extraction while maintaining the same level of computational complexity. Some essential properties of the SWDL are derived, including marginal distributions, energy conservations, unique reconstruction, Moyal formula, complex conjugate symmetry, time reversal symmetry, scaling property, time translation property, frequency modulation property, and time translation and frequency modulation property. Heisenberg's uncertainty principles of the SWDL are formulated, giving rise to three kinds of lower bounds attainable respectively by Gaussian enveloped complex exponential signal, Gaussian signal and Gaussian enveloped chirp signal. The optimal symplectic matrices corresponding to the highest time-frequency resolution are generated by solving the lower bound optimization (minimization) problem. The time-frequency resolution of the SWDL is compared with those of the SWD and WDL to demonstrate its superiority in LFM signals time-frequency energy concentration. A synthesis example is also carried out to verify the feasibility and reliability of the theoretical analysis.
Abstract:Accurate material retrieval is critical for creating realistic 3D assets. Existing methods rely on datasets that capture shape-invariant and lighting-varied representations of materials, which are scarce and face challenges due to limited diversity and inadequate real-world generalization. Most current approaches adopt traditional image search techniques. They fall short in capturing the unique properties of material spaces, leading to suboptimal performance in retrieval tasks. Addressing these challenges, we introduce MaRI, a framework designed to bridge the feature space gap between synthetic and real-world materials. MaRI constructs a shared embedding space that harmonizes visual and material attributes through a contrastive learning strategy by jointly training an image and a material encoder, bringing similar materials and images closer while separating dissimilar pairs within the feature space. To support this, we construct a comprehensive dataset comprising high-quality synthetic materials rendered with controlled shape variations and diverse lighting conditions, along with real-world materials processed and standardized using material transfer techniques. Extensive experiments demonstrate the superior performance, accuracy, and generalization capabilities of MaRI across diverse and complex material retrieval tasks, outperforming existing methods.
Abstract:Learning and improving large language models through human preference feedback has become a mainstream approach, but it has rarely been applied to the field of low-light image enhancement. Existing low-light enhancement evaluations typically rely on objective metrics (such as FID, PSNR, etc.), which often result in models that perform well objectively but lack aesthetic quality. Moreover, most low-light enhancement models are primarily designed for global brightening, lacking detailed refinement. Therefore, the generated images often require additional local adjustments, leading to research gaps in practical applications. To bridge this gap, we propose the following innovations: 1) We collect human aesthetic evaluation text pairs and aesthetic scores from multiple low-light image datasets (e.g., LOL, LOL2, LOM, DCIM, MEF, etc.) to train a low-light image aesthetic evaluation model, supplemented by an optimization algorithm designed to fine-tune the diffusion model. 2) We propose a prompt-driven brightness adjustment module capable of performing fine-grained brightness and aesthetic adjustments for specific instances or regions. 3) We evaluate our method alongside existing state-of-the-art algorithms on mainstream benchmarks. Experimental results show that our method not only outperforms traditional methods in terms of visual quality but also provides greater flexibility and controllability, paving the way for improved aesthetic quality.
Abstract:Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.
Abstract:Modern image generation systems can produce high-quality visuals, yet user prompts often contain ambiguities, requiring multiple revisions. Existing methods struggle to address the nuanced needs of non-expert users. We propose Visual Co-Adaptation (VCA), a novel framework that iteratively refines prompts and aligns generated images with user preferences. VCA employs a fine-tuned language model with reinforcement learning and multi-turn dialogues for prompt disambiguation. Key components include the Incremental Context-Enhanced Dialogue Block for interactive clarification, the Semantic Exploration and Disambiguation Module (SESD) leveraging Retrieval-Augmented Generation (RAG) and CLIP scoring, and the Pixel Precision and Consistency Optimization Module (PPCO) for refining image details using Proximal Policy Optimization (PPO). A human-in-the-loop feedback mechanism further improves performance. Experiments show that VCA surpasses models like DALL-E 3 and Stable Diffusion, reducing dialogue rounds to 4.3, achieving a CLIP score of 0.92, and enhancing user satisfaction to 4.73/5. Additionally, we introduce a novel multi-round dialogue dataset with prompt-image pairs and user intent annotations.