Abstract:Code verifiers play a critical role in post-verification for LLM-based code generation, yet existing supervised fine-tuning methods suffer from data scarcity, high failure rates, and poor inference efficiency. While reinforcement learning (RL) offers a promising alternative by optimizing models through execution-driven rewards without labeled supervision, our preliminary results show that naive RL with only functionality rewards fails to generate effective unit tests for difficult branches and samples. We first theoretically analyze showing that branch coverage, sample difficulty, syntactic and functional correctness can be jointly modeled as RL rewards, where optimizing these signals can improve the reliability of unit-test-based verification. Guided by this analysis, we design syntax- and functionality-aware rewards and further propose branch- and sample-difficulty--aware RL using exponential reward shaping and static analysis metrics. With this formulation, CVeDRL achieves state-of-the-art performance with only 0.6B parameters, yielding up to 28.97% higher pass rate and 15.08% higher branch coverage than GPT-3.5, while delivering over $20\times$ faster inference than competitive baselines. Code is available at https://github.com/LIGHTCHASER1/CVeDRL.git
Abstract:Edge-assisted mobile video analytics (MVA) applications are increasingly shifting from using vision models based on convolutional neural networks (CNNs) to those built on vision transformers (ViTs) to leverage their superior global context modeling and generalization capabilities. However, deploying these advanced models in latency-critical MVA scenarios presents significant challenges. Unlike traditional CNN-based offloading paradigms where network transmission is the primary bottleneck, ViT-based systems are constrained by substantial inference delays, particularly for dense prediction tasks where the need for high-resolution inputs exacerbates the inherent quadratic computational complexity of ViTs. To address these challenges, we propose a dynamic mixed-resolution inference strategy tailored for ViT-backboned dense prediction models, enabling flexible runtime trade-offs between speed and accuracy. Building on this, we introduce ViTMAlis, a ViT-native device-to-edge offloading framework that dynamically adapts to network conditions and video content to jointly reduce transmission and inference delays. We implement a fully functional prototype of ViTMAlis on commodity mobile and edge devices. Extensive experiments demonstrate that, compared to state-of-the-art accuracy-centric, content-aware, and latency-adaptive baselines, ViTMAlis significantly reduces end-to-end offloading latency while improving user-perceived rendering accuracy, providing a practical foundation for next-generation mobile intelligence.
Abstract:Model merging efficiently aggregates capabilities from multiple fine-tuned models into a single one, operating purely in parameter space without original data or expensive re-computation. Despite empirical successes, a unified theory for its effectiveness under heterogeneous finetuning hyperparameters (e.g., varying learning rates, batch sizes) remains missing. Moreover, the lack of hyperparameter transparency in open-source fine-tuned models makes it difficult to predict merged-model performance, leaving practitioners without guidance on how to fine-tune merge-friendly experts. To address those two challenges, we employ $L_2$-Stability theory under heterogeneous hyperparameter environments to analyze the generalization of the merged model $\boldsymbol{x}_{avg}$. This pioneering analysis yields two key contributions: (i) \textit{A unified theoretical framework} is provided to explain existing merging algorithms, revealing how they optimize specific terms in our bound, thus offering a strong theoretical foundation for empirical observations. (ii) \textit{Actionable recommendations} are proposed for practitioners to strategically fine-tune expert models, enabling the construction of merge-friendly models within the pretraining-to-finetuning pipeline. Extensive experiments on the ResNet/Vit family across 20/8 visual classification tasks, involving thousands of finetuning models, robustly confirm the impact of different hyperparameters on the generalization of $\boldsymbol{x}_{avg}$ predicted by our theoretical results.
Abstract:Multi-agent large language model (LLM) and vision-language model (VLM) debate systems employ specialized roles for complex problem-solving, yet model specializations are not leveraged to decide which model should fill which role. We propose dynamic role assignment, a framework that runs a Meta-Debate to select suitable agents before the actual debate. The meta-debate has two stages: (1) proposal, where candidates provide role-tailored arguments, and (2) peer review, where proposals are scored with data and role-specific criteria to choose the best agent for each position. We evaluate our method on LLM problem solving benchmarks. Applied on top of existing debate systems, our approach consistently outperforms uniform assignments (filling all roles with the same model) by up to 74.8% and random assignments (assigning models to roles without considering their suitability) by up to 29.7%, depending on the task and the specific assignment. This work establishes a new paradigm for multi-agent system design, shifting from static agent deployment to dynamic and capability-aware selection.
Abstract:Multi-modal entity alignment aims to identify equivalent entities between two multi-modal Knowledge graphs by integrating multi-modal data, such as images and text, to enrich the semantic representations of entities. However, existing methods may overlook the structural contextual information within each modality, making them vulnerable to interference from shallow features. To address these challenges, we propose MyGram, a modality-aware graph transformer with global distribution for multi-modal entity alignment. Specifically, we develop a modality diffusion learning module to capture deep structural contextual information within modalities and enable fine-grained multi-modal fusion. In addition, we introduce a Gram Loss that acts as a regularization constraint by minimizing the volume of a 4-dimensional parallelotope formed by multi-modal features, thereby achieving global distribution consistency across modalities. We conduct experiments on five public datasets. Results show that MyGram outperforms baseline models, achieving a maximum improvement of 4.8% in Hits@1 on FBDB15K, 9.9% on FBYG15K, and 4.3% on DBP15K.
Abstract:Large Language Model (LLM) outputs often vary across user sociodemographic attributes, leading to disparities in factual accuracy, utility, and safety, even for objective questions where demographic information is irrelevant. Unlike prior work on stereotypical or representational bias, this paper studies identity-dependent degradation of core response quality. We show empirically that such degradation arises from biased generation behavior, despite factual knowledge being robustly encoded across identities. Motivated by this mismatch, we propose a lightweight, training-free framework for identity-robust generation that selectively neutralizes non-critical identity information while preserving semantically essential attributes, thus maintaining output content integrity. Experiments across four benchmarks and 18 sociodemographic identities demonstrate an average 77% reduction in identity-dependent bias compared to vanilla prompting and a 45% reduction relative to prompt-based defenses. Our work addresses a critical gap in mitigating the impact of user identity cues in prompts on core generation quality.
Abstract:Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
Abstract:Predicting river flow in places without streamflow records is challenging because basins respond differently to climate, terrain, vegetation, and soils. Traditional basin attributes describe some of these differences, but they cannot fully represent the complexity of natural environments. This study examines whether AlphaEarth Foundation embeddings, which are learned from large collections of satellite images rather than designed by experts, offer a more informative way to describe basin characteristics. These embeddings summarize patterns in vegetation, land surface properties, and long-term environmental dynamics. We find that models using them achieve higher accuracy when predicting flows in basins not used for training, suggesting that they capture key physical differences more effectively than traditional attributes. We further investigate how selecting appropriate donor basins influences prediction in ungauged regions. Similarity based on the embeddings helps identify basins with comparable environmental and hydrological behavior, improving performance, whereas adding many dissimilar basins can reduce accuracy. The results show that satellite-informed environmental representations can strengthen hydrological forecasting and support the development of models that adapt more easily to different landscapes.
Abstract:Knowledge Tracing (KT) aims to dynamically model a student's mastery of knowledge concepts based on their historical learning interactions. Most current methods rely on single-point estimates, which cannot distinguish true ability from outburst or carelessness, creating ambiguity in judging mastery. To address this issue, we propose a Knowledge Mastery-State Disambiguation for Knowledge Tracing model (KeenKT), which represents a student's knowledge state at each interaction using a Normal-Inverse-Gaussian (NIG) distribution, thereby capturing the fluctuations in student learning behaviors. Furthermore, we design an NIG-distance-based attention mechanism to model the dynamic evolution of the knowledge state. In addition, we introduce a diffusion-based denoising reconstruction loss and a distributional contrastive learning loss to enhance the model's robustness. Extensive experiments on six public datasets demonstrate that KeenKT outperforms SOTA KT models in terms of prediction accuracy and sensitivity to behavioral fluctuations. The proposed method yields the maximum AUC improvement of 5.85% and the maximum ACC improvement of 6.89%.
Abstract:Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.