Abstract:Cone-beam CT (CBCT) is widely used in clinical radiotherapy for image-guided treatment, improving setup accuracy, adaptive planning, and motion management. However, slow gantry rotation limits performance by introducing motion artifacts, blurring, and increased dose. This work aims to develop a clinically feasible method for reconstructing high-quality CBCT volumes from consecutive limited-angle acquisitions, addressing imaging challenges in time- or dose-constrained settings. We propose a limited-angle (LA) geometry-integrated cycle-domain (LA-GICD) framework for CBCT reconstruction, comprising two denoising diffusion probabilistic models (DDPMs) connected via analytic cone-beam forward and back projectors. A Projection-DDPM completes missing projections, followed by back-projection, and an Image-DDPM refines the volume. This dual-domain design leverages complementary priors from projection and image spaces to achieve high-quality reconstructions from limited-angle (<= 90 degrees) scans. Performance was evaluated against full-angle reconstruction. Four board-certified medical physicists conducted assessments. A total of 78 planning CTs in common CBCT geometries were used for training and evaluation. The method achieved a mean absolute error of 35.5 HU, SSIM of 0.84, and PSNR of 29.8 dB, with visibly reduced artifacts and improved soft-tissue clarity. LA-GICD's geometry-aware dual-domain learning, embedded in analytic forward/backward operators, enabled artifact-free, high-contrast reconstructions from a single 90-degree scan, reducing acquisition time and dose four-fold. LA-GICD improves limited-angle CBCT reconstruction with strong data fidelity and anatomical realism. It offers a practical solution for short-arc acquisitions, enhancing CBCT use in radiotherapy by providing clinically applicable images with reduced scan time and dose for more accurate, personalized treatments.
Abstract:High-dose-rate (HDR) brachytherapy plays a critical role in the treatment of locally advanced cervical cancer but remains highly dependent on manual treatment planning expertise. The objective of this study is to develop a fully automated HDR brachytherapy planning framework that integrates reinforcement learning (RL) and dose-based optimization to generate clinically acceptable treatment plans with improved consistency and efficiency. We propose a hierarchical two-stage autoplanning framework. In the first stage, a deep Q-network (DQN)-based RL agent iteratively selects treatment planning parameters (TPPs), which control the trade-offs between target coverage and organ-at-risk (OAR) sparing. The agent's state representation includes both dose-volume histogram (DVH) metrics and current TPP values, while its reward function incorporates clinical dose objectives and safety constraints, including D90, V150, V200 for targets, and D2cc for all relevant OARs (bladder, rectum, sigmoid, small bowel, and large bowel). In the second stage, a customized Adam-based optimizer computes the corresponding dwell time distribution for the selected TPPs using a clinically informed loss function. The framework was evaluated on a cohort of patients with complex applicator geometries. The proposed framework successfully learned clinically meaningful TPP adjustments across diverse patient anatomies. For the unseen test patients, the RL-based automated planning method achieved an average score of 93.89%, outperforming the clinical plans which averaged 91.86%. These findings are notable given that score improvements were achieved while maintaining full target coverage and reducing CTV hot spots in most cases.
Abstract:Anatomical changes during intensity-modulated proton therapy (IMPT) for head-and-neck cancer (HNC) can shift Bragg peaks, risking tumor underdosing and organ-at-risk overdosing. As a result, treatment replanning is often required to maintain clinically acceptable treatment quality. However, current manual replanning processes are resource-intensive and time-consuming. We propose a patient-specific deep reinforcement learning (DRL) framework for automated IMPT replanning, with a reward-shaping mechanism based on a $150$-point plan quality score addressing competing clinical objectives. We formulate the planning process as an RL problem where agents learn control policies to adjust optimization priorities, maximizing plan quality. Unlike population-based approaches, our framework trains personalized agents for each patient using their planning CT (Computed Tomography) and augmented anatomies simulating anatomical changes (tumor progression and regression). This patient-specific approach leverages anatomical similarities throughout treatment, enabling effective plan adaptation. We implemented two DRL algorithms, Deep Q-Network and Proximal Policy Optimization, using dose-volume histograms (DVHs) as state representations and a $22$-dimensional action space of priority adjustments. Evaluation on five HNC patients using actual replanning CT data showed both DRL agents improved initial plan scores from $120.63 \pm 21.40$ to $139.78 \pm 6.84$ (DQN) and $142.74 \pm 5.16$ (PPO), surpassing manual replans generated by a human planner ($137.20 \pm 5.58$). Clinical validation confirms that improvements translate to better tumor coverage and OAR sparing across diverse anatomical changes. This work demonstrates DRL's potential in addressing geometric and dosimetric complexities of adaptive proton therapy, offering efficient offline adaptation solutions and advancing online adaptive proton therapy.
Abstract:In recent years, image classification, as a core task in computer vision, relies on high-quality labelled data, which restricts the wide application of deep learning models in practical scenarios. To alleviate the problem of insufficient labelled samples, semi-supervised learning has gradually become a research hotspot. In this paper, we construct a semi-supervised image classification model based on Generative Adversarial Networks (GANs), and through the introduction of the collaborative training mechanism of generators, discriminators and classifiers, we achieve the effective use of limited labelled data and a large amount of unlabelled data, improve the quality of image generation and classification accuracy, and provide an effective solution for the task of image recognition in complex environments.
Abstract:In this study, we propose a machine learning-based method for noise reduction and disease-causing gene feature extraction in gene sequencing DeepSeqDenoise algorithm combines CNN and RNN to effectively remove the sequencing noise, and improves the signal-to-noise ratio by 9.4 dB. We screened 17 key features by feature engineering, and constructed an integrated learning model to predict disease-causing genes with 94.3% accuracy. We successfully identified 57 new candidate disease-causing genes in a cardiovascular disease cohort validation, and detected 3 missed variants in clinical applications. The method significantly outperforms existing tools and provides strong support for accurate diagnosis of genetic diseases.
Abstract:Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
Abstract:Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
Abstract:As urbanization speeds up and traffic flow increases, the issue of pavement distress is becoming increasingly pronounced, posing a severe threat to road safety and service life. Traditional methods of pothole detection rely on manual inspection, which is not only inefficient but also costly. This paper proposes an intelligent road crack detection and analysis system, based on the enhanced YOLOv8 deep learning framework. A target segmentation model has been developed through the training of 4029 images, capable of efficiently and accurately recognizing and segmenting crack regions in roads. The model also analyzes the segmented regions to precisely calculate the maximum and minimum widths of cracks and their exact locations. Experimental results indicate that the incorporation of ECA and CBAM attention mechanisms substantially enhances the model's detection accuracy and efficiency, offering a novel solution for road maintenance and safety monitoring.
Abstract:In a complex environment, for a mobile robot to safely and collision - free avoid all obstacles, it poses high requirements for its intelligence level. Given that the information such as the position and geometric characteristics of obstacles is random, the control parameters of the robot, such as velocity and angular velocity, are also prone to random deviations. To address this issue in the framework of the Industrial Internet Robot Collaboration System, this paper proposes a global path control scheme for mobile robots based on deep learning. First of all, the dynamic equation of the mobile robot is established. According to the linear velocity and angular velocity of the mobile robot, its motion behaviors are divided into obstacle - avoidance behavior, target - turning behavior, and target approaching behavior. Subsequently, the neural network method in deep learning is used to build a global path planning model for the robot. On this basis, a fuzzy controller is designed with the help of a fuzzy control algorithm to correct the deviations that occur during path planning, thereby achieving optimized control of the robot's global path. In addition, considering edge computing optimization, the proposed model can process local data at the edge device, reducing the communication burden between the robot and the central server, and improving the real time performance of path planning. The experimental results show that for the mobile robot controlled by the research method in this paper, the deviation distance of the path angle is within 5 cm, the deviation convergence can be completed within 10 ms, and the planned path is shorter. This indicates that the proposed scheme can effectively improve the global path planning ability of mobile robots in the industrial Internet environment and promote the collaborative operation of robots through edge computing optimization.
Abstract:Myopia, projected to affect 50% population globally by 2050, is a leading cause of vision loss. Eyes with pathological myopia exhibit distinctive shape distributions, which are closely linked to the progression of vision-threatening complications. Recent understanding of eye-shape-based biomarkers requires magnetic resonance imaging (MRI), however, it is costly and unrealistic in routine ophthalmology clinics. We present Fundus2Globe, the first AI framework that synthesizes patient-specific 3D eye globes from ubiquitous 2D color fundus photographs (CFPs) and routine metadata (axial length, spherical equivalent), bypassing MRI dependency. By integrating a 3D morphable eye model (encoding biomechanical shape priors) with a latent diffusion model, our approach achieves submillimeter accuracy in reconstructing posterior ocular anatomy efficiently. Fundus2Globe uniquely quantifies how vision-threatening lesions (e.g., staphylomas) in CFPs correlate with MRI-validated 3D shape abnormalities, enabling clinicians to simulate posterior segment changes in response to refractive shifts. External validation demonstrates its robust generation performance, ensuring fairness across underrepresented groups. By transforming 2D fundus imaging into 3D digital replicas of ocular structures, Fundus2Globe is a gateway for precision ophthalmology, laying the foundation for AI-driven, personalized myopia management.