Abstract:Comparative analysis of adaptive immune repertoires at population scale is hampered by two practical bottlenecks: the near-quadratic cost of pairwise affinity evaluations and dataset imbalances that obscure clinically important minority clonotypes. We introduce SubQuad, an end-to-end pipeline that addresses these challenges by combining antigen-aware, near-subquadratic retrieval with GPU-accelerated affinity kernels, learned multimodal fusion, and fairness-constrained clustering. The system employs compact MinHash prefiltering to sharply reduce candidate comparisons, a differentiable gating module that adaptively weights complementary alignment and embedding channels on a per-pair basis, and an automated calibration routine that enforces proportional representation of rare antigen-specific subgroups. On large viral and tumor repertoires SubQuad achieves measured gains in throughput and peak memory usage while preserving or improving recall@k, cluster purity, and subgroup equity. By co-designing indexing, similarity fusion, and equity-aware objectives, SubQuad offers a scalable, bias-aware platform for repertoire mining and downstream translational tasks such as vaccine target prioritization and biomarker discovery.
Abstract:Multimodal systems are vulnerable to partial or complete loss of input channels at deployment, which undermines reliability in real-world settings. This paper presents ModalImmune, a training framework that enforces modality immunity by intentionally and controllably collapsing selected modality information during training so the model learns joint representations that are robust to destructive modality influence. The framework combines a spectrum-adaptive collapse regularizer, an information-gain guided controller for targeted interventions, curvature-aware gradient masking to stabilize destructive updates, and a certified Neumann-truncated hyper-gradient procedure for automatic meta-parameter adaptation. Empirical evaluation on standard multimodal benchmarks demonstrates that ModalImmune improves resilience to modality removal and corruption while retaining convergence stability and reconstruction capacity.
Abstract:Emotional expression underpins natural communication and effective human-computer interaction. We present Emotion Collider (EC-Net), a hyperbolic hypergraph framework for multimodal emotion and sentiment modeling. EC-Net represents modality hierarchies using Poincare-ball embeddings and performs fusion through a hypergraph mechanism that passes messages bidirectionally between nodes and hyperedges. To sharpen class separation, contrastive learning is formulated in hyperbolic space with decoupled radial and angular objectives. High-order semantic relations across time steps and modalities are preserved via adaptive hyperedge construction. Empirical results on standard multimodal emotion benchmarks show that EC-Net produces robust, semantically coherent representations and consistently improves accuracy, particularly when modalities are partially available or contaminated by noise. These findings indicate that explicit hierarchical geometry combined with hypergraph fusion is effective for resilient multimodal affect understanding.
Abstract:As multimodal systems increasingly process sensitive personal data, the ability to selectively revoke specific data modalities has become a critical requirement for privacy compliance and user autonomy. We present Missing-by-Design (MBD), a unified framework for revocable multimodal sentiment analysis that combines structured representation learning with a certifiable parameter-modification pipeline. Revocability is critical in privacy-sensitive applications where users or regulators may request removal of modality-specific information. MBD learns property-aware embeddings and employs generator-based reconstruction to recover missing channels while preserving task-relevant signals. For deletion requests, the framework applies saliency-driven candidate selection and a calibrated Gaussian update to produce a machine-verifiable Modality Deletion Certificate. Experiments on benchmark datasets show that MBD achieves strong predictive performance under incomplete inputs and delivers a practical privacy-utility trade-off, positioning surgical unlearning as an efficient alternative to full retraining.
Abstract:The emergence of 3D Gaussian Splatting has fundamentally redefined the capabilities of photorealistic neural rendering by enabling high-throughput synthesis of complex environments. While procedural methods like Wang Tiles have recently been integrated to facilitate the generation of expansive landscapes, these systems typically remain constrained by a reliance on densely sampled exemplar reconstructions. We present DAV-GSWT, a data-efficient framework that leverages diffusion priors and active view sampling to synthesize high-fidelity Gaussian Splatting Wang Tiles from minimal input observations. By integrating a hierarchical uncertainty quantification mechanism with generative diffusion models, our approach autonomously identifies the most informative viewpoints while hallucinating missing structural details to ensure seamless tile transitions. Experimental results indicate that our system significantly reduces the required data volume while maintaining the visual integrity and interactive performance necessary for large-scale virtual environments.
Abstract:As the burgeoning power requirements of sophisticated neural architectures escalate, the information retrieval community has recognized ecological sustainability as a pivotal priority that necessitates a fundamental paradigm shift in model design. While contemporary neural rankers have attained unprecedented accuracy, the substantial environmental externalities associated with their computational intensity often remain overlooked in large-scale deployments. We present GaiaFlow, an innovative framework engineered to facilitate carbon-frugal search by operationalizing semantic-guided diffusion tuning. Our methodology orchestrates the convergence of retrieval-guided Langevin dynamics and a hardware-independent performance modeling strategy to optimize the trade-off between search precision and environmental preservation. By incorporating adaptive early exit protocols and precision-aware quantized inference, the proposed architecture significantly mitigates operational carbon footprints while maintaining robust retrieval quality across heterogeneous computing infrastructures. Extensive experimental evaluations demonstrate that GaiaFlow achieves a superior equilibrium between effectiveness and energy efficiency, offering a scalable and sustainable pathway for next-generation neural search systems.
Abstract:Deploying expressive learning models directly on programmable dataplanes promises line-rate, low-latency traffic analysis but remains hindered by strict hardware constraints and the need for predictable, auditable behavior. Chimera introduces a principled framework that maps attention-oriented neural computations and symbolic constraints onto dataplane primitives, enabling trustworthy inference within the match-action pipeline. Chimera combines a kernelized, linearized attention approximation with a two-layer key-selection hierarchy and a cascade fusion mechanism that enforces hard symbolic guarantees while preserving neural expressivity. The design includes a hardware-aware mapping protocol and a two-timescale update scheme that together permit stable, line-rate operation under realistic dataplane budgets. The paper presents the Chimera architecture, a hardware mapping strategy, and empirical evidence showing that neuro-symbolic attention primitives can achieve high-fidelity inference within the resource envelope of commodity programmable switches.
Abstract:The pursuit of optimal trade-offs in high-dimensional search spaces under stringent computational constraints poses a fundamental challenge for contemporary multi-objective optimization. We develop NeuroPareto, a cohesive architecture that integrates rank-centric filtering, uncertainty disentanglement, and history-conditioned acquisition strategies to navigate complex objective landscapes. A calibrated Bayesian classifier estimates epistemic uncertainty across non-domination tiers, enabling rapid generation of high-quality candidates with minimal evaluation cost. Deep Gaussian Process surrogates further separate predictive uncertainty into reducible and irreducible components, providing refined predictive means and risk-aware signals for downstream selection. A lightweight acquisition network, trained online from historical hypervolume improvements, guides expensive evaluations toward regions balancing convergence and diversity. With hierarchical screening and amortized surrogate updates, the method maintains accuracy while keeping computational overhead low. Experiments on DTLZ and ZDT suites and a subsurface energy extraction task show that NeuroPareto consistently outperforms classifier-enhanced and surrogate-assisted baselines in Pareto proximity and hypervolume.
Abstract:Designing front-ends for speech deepfake detectors primarily focuses on two categories. Hand-crafted filterbank features are transparent but are limited in capturing high-level semantic details, often resulting in performance gaps compared to self-supervised (SSL) features. SSL features, in turn, lack interpretability and may overlook fine-grained spectral anomalies. We propose the WST-X series, a novel family of feature extractors that combines the best of both worlds via the wavelet scattering transform (WST), integrating wavelets with nonlinearities analogous to deep convolutional networks. We investigate 1D and 2D WSTs to extract acoustic details and higher-order structural anomalies, respectively. Experimental results on the recent and challenging Deepfake-Eval-2024 dataset indicate that WST-X outperforms existing front-ends by a wide margin. Our analysis reveals that a small averaging scale ($J$), combined with high-frequency and directional resolutions ($Q, L$), is critical for capturing subtle artifacts. This underscores the value of translation-invariant and deformation-stable features for robust and interpretable speech deepfake detection.
Abstract:Repertoire-level analysis of T cell receptors offers a biologically grounded signal for disease detection and immune monitoring, yet practical deployment is impeded by label sparsity, cohort heterogeneity, and the computational burden of adapting large encoders to new tasks. We introduce a framework that synthesizes compact task-specific parameterizations from a learned dictionary of prototypes conditioned on lightweight task descriptors derived from repertoire probes and pooled embedding statistics. This synthesis produces small adapter modules applied to a frozen pretrained backbone, enabling immediate adaptation to novel tasks with only a handful of support examples and without full model fine-tuning. The architecture preserves interpretability through motif-aware probes and a calibrated motif discovery pipeline that links predictive decisions to sequence-level signals. Together, these components yield a practical, sample-efficient, and interpretable pathway for translating repertoire-informed models into diverse clinical and research settings where labeled data are scarce and computational resources are constrained.