Abstract:Vision-Language-Action (VLA) models leveraging the native autoregressive paradigm of Vision-Language Models (VLMs) have demonstrated superior instruction-following and training efficiency. Central to this paradigm is action tokenization, yet its design has primarily focused on reconstruction fidelity, failing to address its direct impact on VLA optimization. Consequently, the fundamental question of \textit{what makes for good action tokenizers} remains unanswered. In this paper, we bridge this gap by establishing design principles specifically from the perspective of VLA optimization. We identify a set of best practices based on information-theoretic insights, including maximized temporal token overlap, minimized vocabulary redundancy, enhanced multimodal mutual information, and token independence. Guided by these principles, we introduce \textbf{ActionCodec}, a high-performance action tokenizer that significantly enhances both training efficiency and VLA performance across diverse simulation and real-world benchmarks. Notably, on LIBERO, a SmolVLM2-2.2B fine-tuned with ActionCodec achieves a 95.5\% success rate without any robotics pre-training. With advanced architectural enhancements, this reaches 97.4\%, representing a new SOTA for VLA models without robotics pre-training. We believe our established design principles, alongside the released model, will provide a clear roadmap for the community to develop more effective action tokenizers.
Abstract:Discrete audio tokenizers are fundamental to empowering large language models with native audio processing and generation capabilities. Despite recent progress, existing approaches often rely on pretrained encoders, semantic distillation, or heterogeneous CNN-based architectures. These designs introduce fixed inductive biases that limit reconstruction fidelity and hinder effective scaling. In this paper, we argue that discrete audio tokenization should be learned fully end-to-end using a homogeneous and scalable architecture. To this end, we first propose CAT (Causal Audio Tokenizer with Transformer), a purely Transformer-based architecture that jointly optimizes the encoder, quantizer, and decoder from scratch for high-fidelity reconstruction. Building on the CAT architecture, we develop MOSS-Audio-Tokenizer, a large-scale audio tokenizer featuring 1.6 billion parameters, pre-trained on 3 million hours of diverse, general audio data. We show that this simple, fully end-to-end approach built from homogeneous, causal Transformer blocks scales gracefully and supports high-fidelity reconstruction across diverse audio domains. Across speech, sound, and music, MOSS-Audio-Tokenizer consistently outperforms prior codecs over a wide range of bitrates, while exhibiting predictable improvements with increased scale. Notably, leveraging the discrete tokens from our model, we develop the first purely autoregressive TTS model that surpasses prior non-autoregressive and cascaded systems. Furthermore, MOSS-Audio-Tokenizer enables competitive ASR performance without auxiliary encoders. Our findings position the CAT architecture as a unified, scalable interface for the next generation of native audio foundation models.
Abstract:Ethics review is a foundational mechanism of modern research governance, yet contemporary systems face increasing strain as ethical risks arise as structural consequences of large-scale, interdisciplinary scientific practice. The demand for consistent and defensible decisions under heterogeneous risk profiles exposes limitations in institutional review capacity rather than in the legitimacy of ethics oversight. Recent advances in large language models (LLMs) offer new opportunities to support ethics review, but their direct application remains limited by insufficient ethical reasoning capability, weak integration with regulatory structures, and strict privacy constraints on authentic review materials. In this work, we introduce Mirror, an agentic framework for AI-assisted ethical review that integrates ethical reasoning, structured rule interpretation, and multi-agent deliberation within a unified architecture. At its core is EthicsLLM, a foundational model fine-tuned on EthicsQA, a specialized dataset of 41K question-chain-of-thought-answer triples distilled from authoritative ethics and regulatory corpora. EthicsLLM provides detailed normative and regulatory understanding, enabling Mirror to operate in two complementary modes. Mirror-ER (expedited Review) automates expedited review through an executable rule base that supports efficient and transparent compliance checks for minimal-risk studies. Mirror-CR (Committee Review) simulates full-board deliberation through coordinated interactions among expert agents, an ethics secretary agent, and a principal investigator agent, producing structured, committee-level assessments across ten ethical dimensions. Empirical evaluations demonstrate that Mirror significantly improves the quality, consistency, and professionalism of ethics assessments compared with strong generalist LLMs.
Abstract:Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
Abstract:Block-sparse attention is promising for accelerating long-context LLM pre-filling, yet identifying relevant blocks efficiently remains a bottleneck. Existing methods typically employ coarse-grained attention as a proxy for block importance estimation, but often resort to expensive token-level searching or scoring, resulting in significant selection overhead. In this work, we trace the inaccuracy of standard coarse-grained attention via mean pooling to a theoretical root cause: the interaction between mean pooling and Rotary Positional Embeddings (RoPE). We prove that mean pooling acts as a low-pass filter that induces destructive interference in high-frequency dimensions, effectively creating a "blind spot" for local positional information (e.g., slash patterns). To address this, we introduce Prism, a training-free spectral-aware approach that decomposes block selection into high-frequency and low-frequency branches. By applying energy-based temperature calibration, Prism restores the attenuated positional signals directly from pooled representations, enabling block importance estimation using purely block-level operations, thereby improving efficiency. Extensive evaluations confirm that Prism maintains accuracy parity with full attention while delivering up to $\mathbf{5.1\times}$ speedup.
Abstract:Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
Abstract:Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:Despite the non-autoregressive potential of diffusion language models (dLLMs), existing decoding strategies demonstrate positional bias, failing to fully unlock the potential of arbitrary generation. In this work, we delve into the inherent spectral characteristics of dLLMs and present the first frequency-domain analysis showing that low-frequency components in hidden states primarily encode global structural information and long-range dependencies, while high-frequency components are responsible for characterizing local details. Based on this observation, we propose FourierSampler, which leverages a frequency-domain sliding window mechanism to dynamically guide the model to achieve a "structure-to-detail" generation. FourierSampler outperforms other inference enhancement strategies on LLADA and SDAR, achieving relative improvements of 20.4% on LLaDA1.5-8B and 16.0% on LLaDA-8B-Instruct. It notably surpasses similarly sized autoregressive models like Llama3.1-8B-Instruct.
Abstract:The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.