Abstract:This paper introduces an interactive continual learning paradigm where AI models dynamically learn new skills from real-time human feedback while retaining prior knowledge. This paradigm distinctively addresses two major limitations of traditional continual learning: (1) dynamic model updates using streaming, real-time human-annotated data, rather than static datasets with fixed labels, and (2) the assumption of clean labels, by explicitly handling the noisy feedback common in real-world interactions. To tackle these problems, we propose RiCL, a Reinforced interactive Continual Learning framework leveraging Large Language Models (LLMs) to learn new skills effectively from dynamic feedback. RiCL incorporates three key components: a temporal consistency-aware purifier to automatically discern clean from noisy samples in data streams; an interaction-aware direct preference optimization strategy to align model behavior with human intent by reconciling AI-generated and human-provided feedback; and a noise-resistant contrastive learning module that captures robust representations by exploiting inherent data relationships, thus avoiding reliance on potentially unreliable labels. Extensive experiments on two benchmark datasets (FewRel and TACRED), contaminated with realistic noise patterns, demonstrate that our RiCL approach substantially outperforms existing combinations of state-of-the-art online continual learning and noisy-label learning methods.
Abstract:This survey explores recent advancements in reasoning large language models (LLMs) designed to mimic "slow thinking" - a reasoning process inspired by human cognition, as described in Kahneman's Thinking, Fast and Slow. These models, like OpenAI's o1, focus on scaling computational resources dynamically during complex tasks, such as math reasoning, visual reasoning, medical diagnosis, and multi-agent debates. We present the development of reasoning LLMs and list their key technologies. By synthesizing over 100 studies, it charts a path toward LLMs that combine human-like deep thinking with scalable efficiency for reasoning. The review breaks down methods into three categories: (1) test-time scaling dynamically adjusts computation based on task complexity via search and sampling, dynamic verification; (2) reinforced learning refines decision-making through iterative improvement leveraging policy networks, reward models, and self-evolution strategies; and (3) slow-thinking frameworks (e.g., long CoT, hierarchical processes) that structure problem-solving with manageable steps. The survey highlights the challenges and further directions of this domain. Understanding and advancing the reasoning abilities of LLMs is crucial for unlocking their full potential in real-world applications, from scientific discovery to decision support systems.
Abstract:Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.