Alert button
Picture for Siva Reddy

Siva Reddy

Alert button

In-Context Learning for Text Classification with Many Labels

Sep 19, 2023
Aristides Milios, Siva Reddy, Dzmitry Bahdanau

In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.

* 11 pages, 4 figures 
Viaarxiv icon

Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Jul 31, 2023
Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, Siva Reddy

Figure 1 for Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Figure 2 for Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Figure 3 for Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Figure 4 for Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa

Viaarxiv icon

The Impact of Positional Encoding on Length Generalization in Transformers

May 31, 2023
Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, Siva Reddy

Figure 1 for The Impact of Positional Encoding on Length Generalization in Transformers
Figure 2 for The Impact of Positional Encoding on Length Generalization in Transformers
Figure 3 for The Impact of Positional Encoding on Length Generalization in Transformers
Figure 4 for The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.

Viaarxiv icon

Are Diffusion Models Vision-And-Language Reasoners?

May 25, 2023
Benno Krojer, Elinor Poole-Dayan, Vikram Voleti, Christopher Pal, Siva Reddy

Figure 1 for Are Diffusion Models Vision-And-Language Reasoners?
Figure 2 for Are Diffusion Models Vision-And-Language Reasoners?
Figure 3 for Are Diffusion Models Vision-And-Language Reasoners?
Figure 4 for Are Diffusion Models Vision-And-Language Reasoners?

Text-conditioned image generation models have recently shown immense qualitative success using denoising diffusion processes. However, unlike discriminative vision-and-language models, it is a non-trivial task to subject these diffusion-based generative models to automatic fine-grained quantitative evaluation of high-level phenomena such as compositionality. Towards this goal, we perform two innovations. First, we transform diffusion-based models (in our case, Stable Diffusion) for any image-text matching (ITM) task using a novel method called DiffusionITM. Second, we introduce the Generative-Discriminative Evaluation Benchmark (GDBench) benchmark with 7 complex vision-and-language tasks, bias evaluation and detailed analysis. We find that Stable Diffusion + DiffusionITM is competitive on many tasks and outperforms CLIP on compositional tasks like like CLEVR and Winoground. We further boost its compositional performance with a transfer setup by fine-tuning on MS-COCO while retaining generative capabilities. We also measure the stereotypical bias in diffusion models, and find that Stable Diffusion 2.1 is, for the most part, less biased than Stable Diffusion 1.5. Overall, our results point in an exciting direction bringing discriminative and generative model evaluation closer. We will release code and benchmark setup soon.

Viaarxiv icon

StarCoder: may the source be with you!

May 09, 2023
Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries

Figure 1 for StarCoder: may the source be with you!
Figure 2 for StarCoder: may the source be with you!
Figure 3 for StarCoder: may the source be with you!
Figure 4 for StarCoder: may the source be with you!

The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python, can be prompted to achieve 40\% pass@1 on HumanEval, and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.

Viaarxiv icon

The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents

Apr 05, 2023
Xing Han Lu, Siva Reddy, Harm de Vries

Figure 1 for The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
Figure 2 for The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
Figure 3 for The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
Figure 4 for The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents

We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users.

* Accepted at EACL 2023 
Viaarxiv icon

Using In-Context Learning to Improve Dialogue Safety

Feb 02, 2023
Nicholas Meade, Spandana Gella, Devamanyu Hazarika, Prakhar Gupta, Di Jin, Siva Reddy, Yang Liu, Dilek Hakkani-Tür

Figure 1 for Using In-Context Learning to Improve Dialogue Safety
Figure 2 for Using In-Context Learning to Improve Dialogue Safety
Figure 3 for Using In-Context Learning to Improve Dialogue Safety
Figure 4 for Using In-Context Learning to Improve Dialogue Safety

While large neural-based conversational models have become increasingly proficient as dialogue agents, recent work has highlighted safety issues with these systems. For example, these systems can be goaded into generating toxic content, which often perpetuates social biases or stereotypes. We investigate a retrieval-based framework for reducing bias and toxicity in responses generated from neural-based chatbots. It uses in-context learning to steer a model towards safer generations. Concretely, to generate a response to an unsafe dialogue context, we retrieve demonstrations of safe model responses to similar dialogue contexts. We find our proposed approach performs competitively with strong baselines which use fine-tuning. For instance, using automatic evaluation, we find our best fine-tuned baseline only generates safe responses to unsafe dialogue contexts from DiaSafety 2.92% more than our approach. Finally, we also propose a straightforward re-ranking procedure which can further improve response safeness.

Viaarxiv icon

Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model

Dec 18, 2022
Parishad BehnamGhader, Santiago Miret, Siva Reddy

The emergence of large pretrained models has enabled language models to achieve superior performance in common NLP tasks, including language modeling and question answering, compared to previous static word representation methods. Augmenting these models with a retriever to retrieve the related text and documents as supporting information has shown promise in effectively solving NLP problems in a more interpretable way given that the additional knowledge is injected explicitly rather than being captured in the models' parameters. In spite of the recent progress, our analysis on retriever-augmented language models shows that this class of language models still lack reasoning over the retrieved documents. In this paper, we study the strengths and weaknesses of different retriever-augmented language models such as REALM, kNN-LM, FiD, ATLAS, and Flan-T5 in reasoning over the selected documents in different tasks. In particular, we analyze the reasoning failures of each of these models and study how the models' failures in reasoning are rooted in the retriever module as well as the language model.

* 14 pages, 8 figures 
Viaarxiv icon

Syntactic Substitutability as Unsupervised Dependency Syntax

Nov 29, 2022
Jasper Jian, Siva Reddy

Figure 1 for Syntactic Substitutability as Unsupervised Dependency Syntax
Figure 2 for Syntactic Substitutability as Unsupervised Dependency Syntax
Figure 3 for Syntactic Substitutability as Unsupervised Dependency Syntax
Figure 4 for Syntactic Substitutability as Unsupervised Dependency Syntax

Syntax is a latent hierarchical structure which underpins the robust and compositional nature of human language. An active line of inquiry is whether large pretrained language models (LLMs) are able to acquire syntax by training on text alone; understanding a model's syntactic capabilities is essential to understanding how it processes and makes use of language. In this paper, we propose a new method, SSUD, which allows for the induction of syntactic structures without supervision from gold-standard parses. Instead, we seek to define formalism-agnostic, model-intrinsic syntactic parses by using a property of syntactic relations: syntactic substitutability. We demonstrate both quantitative and qualitative gains on dependency parsing tasks using SSUD, and induce syntactic structures which we hope provide clarity into LLMs and linguistic representations, alike.

Viaarxiv icon