In 3D human shape and pose estimation from a monocular video, models trained with limited labeled data cannot generalize well to videos with occlusion, which is common in the wild videos. The recent human neural rendering approaches focusing on novel view synthesis initialized by the off-the-shelf human shape and pose methods have the potential to correct the initial human shape. However, the existing methods have some drawbacks such as, erroneous in handling occlusion, sensitive to inaccurate human segmentation, and ineffective loss computation due to the non-regularized opacity field. To address these problems, we introduce ORTexME, an occlusion-robust temporal method that utilizes temporal information from the input video to better regularize the occluded body parts. While our ORTexME is based on NeRF, to determine the reliable regions for the NeRF ray sampling, we utilize our novel average texture learning approach to learn the average appearance of a person, and to infer a mask based on the average texture. In addition, to guide the opacity-field updates in NeRF to suppress blur and noise, we propose the use of human body mesh. The quantitative evaluation demonstrates that our method achieves significant improvement on the challenging multi-person 3DPW dataset, where our method achieves 1.8 P-MPJPE error reduction. The SOTA rendering-based methods fail and enlarge the error up to 5.6 on the same dataset.
Decoding language from neural signals holds considerable theoretical and practical importance. Previous research has indicated the feasibility of decoding text or speech from invasive neural signals. However, when using non-invasive neural signals, significant challenges are encountered due to their low quality. In this study, we proposed a data-driven approach for decoding semantic of language from Magnetoencephalography (MEG) signals recorded while subjects were listening to continuous speech. First, a multi-subject decoding model was trained using contrastive learning to reconstruct continuous word embeddings from MEG data. Subsequently, a beam search algorithm was adopted to generate text sequences based on the reconstructed word embeddings. Given a candidate sentence in the beam, a language model was used to predict the subsequent words. The word embeddings of the subsequent words were correlated with the reconstructed word embedding. These correlations were then used as a measure of the probability for the next word. The results showed that the proposed continuous word embedding model can effectively leverage both subject-specific and subject-shared information. Additionally, the decoded text exhibited significant similarity to the target text, with an average BERTScore of 0.816, a score comparable to that in the previous fMRI study.
Auditory spatial attention detection (ASAD) aims to decode the attended spatial location with EEG in a multiple-speaker setting. ASAD methods are inspired by the brain lateralization of cortical neural responses during the processing of auditory spatial attention, and show promising performance for the task of auditory attention decoding (AAD) with neural recordings. In the previous ASAD methods, the spatial distribution of EEG electrodes is not fully exploited, which may limit the performance of these methods. In the present work, by transforming the original EEG channels into a two-dimensional (2D) spatial topological map, the EEG data is transformed into a three-dimensional (3D) arrangement containing spatial-temporal information. And then a 3D deep convolutional neural network (DenseNet-3D) is used to extract temporal and spatial features of the neural representation for the attended locations. The results show that the proposed method achieves higher decoding accuracy than the state-of-the-art (SOTA) method (94.4% compared to XANet's 90.6%) with 1-second decision window for the widely used KULeuven (KUL) dataset, and the code to implement our work is available on Github: https://github.com/xuxiran/ASAD_DenseNet
Underwater object detection faces the problem of underwater image degradation, which affects the performance of the detector. Underwater object detection methods based on noise reduction and image enhancement usually do not provide images preferred by the detector or require additional datasets. In this paper, we propose a plug-and-play Underwater joint image enhancement Module (UnitModule) that provides the input image preferred by the detector. We design an unsupervised learning loss for the joint training of UnitModule with the detector without additional datasets to improve the interaction between UnitModule and the detector. Furthermore, a color cast predictor with the assisting color cast loss and a data augmentation called Underwater Color Random Transfer (UCRT) are designed to improve the performance of UnitModule on underwater images with different color casts. Extensive experiments are conducted on DUO for different object detection models, where UnitModule achieves the highest performance improvement of 2.6 AP for YOLOv5-S and gains the improvement of 3.3 AP on the brand-new test set (URPCtest). And UnitModule significantly improves the performance of all object detection models we test, especially for models with a small number of parameters. In addition, UnitModule with a small number of parameters of 31K has little effect on the inference speed of the original object detection model. Our quantitative and visual analysis also demonstrates the effectiveness of UnitModule in enhancing the input image and improving the perception ability of the detector for object features.
Recent researches indicate that Pre-trained Large Language Models (LLMs) possess cognitive constructs similar to those observed in humans, prompting researchers to investigate the cognitive aspects of LLMs. This paper focuses on explicit and implicit social bias, a distinctive two-level cognitive construct in psychology. It posits that individuals' explicit social bias, which is their conscious expression of bias in the statements, may differ from their implicit social bias, which represents their unconscious bias. We propose a two-stage approach and discover a parallel phenomenon in LLMs known as "re-judge inconsistency" in social bias. In the initial stage, the LLM is tasked with automatically completing statements, potentially incorporating implicit social bias. However, in the subsequent stage, the same LLM re-judges the biased statement generated by itself but contradicts it. We propose that this re-judge inconsistency can be similar to the inconsistency between human's unaware implicit social bias and their aware explicit social bias. Experimental investigations on ChatGPT and GPT-4 concerning common gender biases examined in psychology corroborate the highly stable nature of the re-judge inconsistency. This finding may suggest that diverse cognitive constructs emerge as LLMs' capabilities strengthen. Consequently, leveraging psychological theories can provide enhanced insights into the underlying mechanisms governing the expressions of explicit and implicit constructs in LLMs.
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyperparameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods, but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0\% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89.5\%, 90.9\%, and 88.3\% on North American, European, and Asian cohorts, respectively. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models.
Jina Embeddings constitutes a set of high-performance sentence embedding models adept at translating various textual inputs into numerical representations, thereby capturing the semantic essence of the text. The models excel in applications such as dense retrieval and semantic textual similarity. This paper details the development of Jina Embeddings, starting with the creation of high-quality pairwise and triplet datasets. It underlines the crucial role of data cleaning in dataset preparation, gives in-depth insights into the model training process, and concludes with a comprehensive performance evaluation using the Massive Textual Embedding Benchmark (MTEB). To increase the model's awareness of negations, we constructed a novel training and evaluation dataset of negated and non-negated statements, which we make publicly available to the community.
Goal-conditioned reinforcement learning (RL) is an interesting extension of the traditional RL framework, where the dynamic environment and reward sparsity can cause conventional learning algorithms to fail. Reward shaping is a practical approach to improving sample efficiency by embedding human domain knowledge into the learning process. Existing reward shaping methods for goal-conditioned RL are typically built on distance metrics with a linear and isotropic distribution, which may fail to provide sufficient information about the ever-changing environment with high complexity. This paper proposes a novel magnetic field-based reward shaping (MFRS) method for goal-conditioned RL tasks with dynamic target and obstacles. Inspired by the physical properties of magnets, we consider the target and obstacles as permanent magnets and establish the reward function according to the intensity values of the magnetic field generated by these magnets. The nonlinear and anisotropic distribution of the magnetic field intensity can provide more accessible and conducive information about the optimization landscape, thus introducing a more sophisticated magnetic reward compared to the distance-based setting. Further, we transform our magnetic reward to the form of potential-based reward shaping by learning a secondary potential function concurrently to ensure the optimal policy invariance of our method. Experiments results in both simulated and real-world robotic manipulation tasks demonstrate that MFRS outperforms relevant existing methods and effectively improves the sample efficiency of RL algorithms in goal-conditioned tasks with various dynamics of the target and obstacles.