Abstract:In implicit collaborative filtering, hard negative mining techniques are developed to accelerate and enhance the recommendation model learning. However, the inadvertent selection of false negatives remains a major concern in hard negative sampling, as these false negatives can provide incorrect information and mislead the model learning. To date, only a small number of studies have been committed to solve the false negative problem, primarily focusing on designing sophisticated sampling algorithms to filter false negatives. In contrast, this paper shifts its focus to refining the loss function. We find that the original Bayesian Personalized Ranking (BPR), initially designed for uniform negative sampling, is inadequate in adapting to hard sampling scenarios. Hence, we introduce an enhanced Bayesian Personalized Ranking objective, named as Hard-BPR, which is specifically crafted for dynamic hard negative sampling to mitigate the influence of false negatives. This method is simple yet efficient for real-world deployment. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness and robustness of our approach, along with the enhanced ability to distinguish false negatives.
Abstract:Expressive human pose and shape estimation (a.k.a. 3D whole-body mesh recovery) involves the human body, hand, and expression estimation. Most existing methods have tackled this task in a two-stage manner, first detecting the human body part with an off-the-shelf detection model and inferring the different human body parts individually. Despite the impressive results achieved, these methods suffer from 1) loss of valuable contextual information via cropping, 2) introducing distractions, and 3) lacking inter-association among different persons and body parts, inevitably causing performance degradation, especially for crowded scenes. To address these issues, we introduce a novel all-in-one-stage framework, AiOS, for multiple expressive human pose and shape recovery without an additional human detection step. Specifically, our method is built upon DETR, which treats multi-person whole-body mesh recovery task as a progressive set prediction problem with various sequential detection. We devise the decoder tokens and extend them to our task. Specifically, we first employ a human token to probe a human location in the image and encode global features for each instance, which provides a coarse location for the later transformer block. Then, we introduce a joint-related token to probe the human joint in the image and encoder a fine-grained local feature, which collaborates with the global feature to regress the whole-body mesh. This straightforward but effective model outperforms previous state-of-the-art methods by a 9% reduction in NMVE on AGORA, a 30% reduction in PVE on EHF, a 10% reduction in PVE on ARCTIC, and a 3% reduction in PVE on EgoBody.
Abstract:In this work, we show that synthetic data created by generative models is complementary to computer graphics (CG) rendered data for achieving remarkable generalization performance on diverse real-world scenes for 3D human pose and shape estimation (HPS). Specifically, we propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations. We first collect a large-scale human-centric dataset with comprehensive annotations, e.g., text captions and surface normal images. Then, we train a customized ControlNet model upon this dataset to generate diverse human images and initial ground-truth labels. At the core of this step is that we can easily obtain numerous surface normal images from a 3D human parametric model, e.g., SMPL-X, by rendering the 3D mesh onto the image plane. As there exists inevitable noise in the initial labels, we then apply an off-the-shelf foundation segmentation model, i.e., SAM, to filter negative data samples. Our data generation pipeline is flexible and customizable to facilitate different real-world tasks, e.g., ego-centric scenes and perspective-distortion scenes. The generated dataset comprises 0.79M images with corresponding 3D annotations, covering versatile viewpoints, scenes, and human identities. We train various HPS regressors on top of the generated data and evaluate them on a wide range of benchmarks (3DPW, RICH, EgoBody, AGORA, SSP-3D) to verify the effectiveness of the generated data. By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
Abstract:As a dominant force in text-to-image generation tasks, Diffusion Probabilistic Models (DPMs) face a critical challenge in controllability, struggling to adhere strictly to complex, multi-faceted instructions. In this work, we aim to address this alignment challenge for conditional generation tasks. First, we provide an alternative view of state-of-the-art DPMs as a way of inverting advanced Vision-Language Models (VLMs). With this formulation, we naturally propose a training-free approach that bypasses the conventional sampling process associated with DPMs. By directly optimizing images with the supervision of discriminative VLMs, the proposed method can potentially achieve a better text-image alignment. As proof of concept, we demonstrate the pipeline with the pre-trained BLIP-2 model and identify several key designs for improved image generation. To further enhance the image fidelity, a Score Distillation Sampling module of Stable Diffusion is incorporated. By carefully balancing the two components during optimization, our method can produce high-quality images with near state-of-the-art performance on T2I-Compbench.
Abstract:With the incorporation of the UNet architecture, diffusion probabilistic models have become a dominant force in image generation tasks. One key design in UNet is the skip connections between the encoder and decoder blocks. Although skip connections have been shown to improve training stability and model performance, we reveal that such shortcuts can be a limiting factor for the complexity of the transformation. As the sampling steps decrease, the generation process and the role of the UNet get closer to the push-forward transformations from Gaussian distribution to the target, posing a challenge for the network's complexity. To address this challenge, we propose Skip-Tuning, a simple yet surprisingly effective training-free tuning method on the skip connections. Our method can achieve 100% FID improvement for pretrained EDM on ImageNet 64 with only 19 NFEs (1.75), breaking the limit of ODE samplers regardless of sampling steps. Surprisingly, the improvement persists when we increase the number of sampling steps and can even surpass the best result from EDM-2 (1.58) with only 39 NFEs (1.57). Comprehensive exploratory experiments are conducted to shed light on the surprising effectiveness. We observe that while Skip-Tuning increases the score-matching losses in the pixel space, the losses in the feature space are reduced, particularly at intermediate noise levels, which coincide with the most effective range accounting for image quality improvement.
Abstract:Recommender systems are designed to learn user preferences from observed feedback and comprise many fundamental tasks, such as rating prediction and post-click conversion rate (pCVR) prediction. However, the observed feedback usually suffer from two issues: selection bias and data sparsity, where biased and insufficient feedback seriously degrade the performance of recommender systems in terms of accuracy and ranking. Existing solutions for handling the issues, such as data imputation and inverse propensity score, are highly susceptible to additional trained imputation or propensity models. In this work, we propose a novel counterfactual contrastive learning framework for recommendation, named CounterCLR, to tackle the problem of non-random missing data by exploiting the advances in contrast learning. Specifically, the proposed CounterCLR employs a deep representation network, called CauNet, to infer non-random missing data in recommendations and perform user preference modeling by further introducing a self-supervised contrastive learning task. Our CounterCLR mitigates the selection bias problem without the need for additional models or estimators, while also enhancing the generalization ability in cases of sparse data. Experiments on real-world datasets demonstrate the effectiveness and superiority of our method.
Abstract:The ubiquitous missing values cause the multivariate time series data to be partially observed, destroying the integrity of time series and hindering the effective time series data analysis. Recently deep learning imputation methods have demonstrated remarkable success in elevating the quality of corrupted time series data, subsequently enhancing performance in downstream tasks. In this paper, we conduct a comprehensive survey on the recently proposed deep learning imputation methods. First, we propose a taxonomy for the reviewed methods, and then provide a structured review of these methods by highlighting their strengths and limitations. We also conduct empirical experiments to study different methods and compare their enhancement for downstream tasks. Finally, the open issues for future research on multivariate time series imputation are pointed out. All code and configurations of this work, including a regularly maintained multivariate time series imputation paper list, can be found in the GitHub repository~\url{https://github.com/WenjieDu/Awesome\_Imputation}.
Abstract:We introduce Efficient Motion Diffusion Model (EMDM) for fast and high-quality human motion generation. Although previous motion diffusion models have shown impressive results, they struggle to achieve fast generation while maintaining high-quality human motions. Motion latent diffusion has been proposed for efficient motion generation. However, effectively learning a latent space can be non-trivial in such a two-stage manner. Meanwhile, accelerating motion sampling by increasing the step size, e.g., DDIM, typically leads to a decline in motion quality due to the inapproximation of complex data distributions when naively increasing the step size. In this paper, we propose EMDM that allows for much fewer sample steps for fast motion generation by modeling the complex denoising distribution during multiple sampling steps. Specifically, we develop a Conditional Denoising Diffusion GAN to capture multimodal data distributions conditioned on both control signals, i.e., textual description and denoising time step. By modeling the complex data distribution, a larger sampling step size and fewer steps are achieved during motion synthesis, significantly accelerating the generation process. To effectively capture the human dynamics and reduce undesired artifacts, we employ motion geometric loss during network training, which improves the motion quality and training efficiency. As a result, EMDM achieves a remarkable speed-up at the generation stage while maintaining high-quality motion generation in terms of fidelity and diversity.
Abstract:Gaussian Process Upper Confidence Bound (GP-UCB) is one of the most popular methods for optimizing black-box functions with noisy observations, due to its simple structure and superior performance. Its empirical successes lead to a natural, yet unresolved question: Is GP-UCB regret optimal? In this paper, we offer the first generally affirmative answer to this important open question in the Bayesian optimization literature. We establish new upper bounds on both the simple and cumulative regret of GP-UCB when the objective function to optimize admits certain smoothness property. These upper bounds match the known minimax lower bounds (up to logarithmic factors independent of the feasible region's dimensionality) for optimizing functions with the same smoothness. Intriguingly, our findings indicate that, with the same level of exploration, GP-UCB can simultaneously achieve optimality in both simple and cumulative regret. The crux of our analysis hinges on a refined uniform error bound for online estimation of functions in reproducing kernel Hilbert spaces. This error bound, which we derive from empirical process theory, is of independent interest, and its potential applications may reach beyond the scope of this study.
Abstract:Metaverse technologies demand accurate, real-time, and immersive modeling on consumer-grade hardware for both non-human perception (e.g., drone/robot/autonomous car navigation) and immersive technologies like AR/VR, requiring both structural accuracy and photorealism. However, there exists a knowledge gap in how to apply geometric reconstruction and photorealism modeling (novel view synthesis) in a unified framework. To address this gap and promote the development of robust and immersive modeling and rendering with consumer-grade devices, first, we propose a real-world Multi-Sensor Hybrid Room Dataset (MuSHRoom). Our dataset presents exciting challenges and requires state-of-the-art methods to be cost-effective, robust to noisy data and devices, and can jointly learn 3D reconstruction and novel view synthesis, instead of treating them as separate tasks, making them ideal for real-world applications. Second, we benchmark several famous pipelines on our dataset for joint 3D mesh reconstruction and novel view synthesis. Finally, in order to further improve the overall performance, we propose a new method that achieves a good trade-off between the two tasks. Our dataset and benchmark show great potential in promoting the improvements for fusing 3D reconstruction and high-quality rendering in a robust and computationally efficient end-to-end fashion.