IBM T. J. Watson Research Center
Abstract:While Large Language Models (LLMs) are aligned to mitigate risks, their safety guardrails remain fragile against jailbreak attacks. This reveals limited understanding of components governing safety. Existing methods rely on local, greedy attribution that assumes independent component contributions. However, they overlook the cooperative interactions between different components in LLMs, such as attention heads, which jointly contribute to safety mechanisms. We propose \textbf{G}lobal \textbf{O}ptimization for \textbf{S}afety \textbf{V}ector Extraction (GOSV), a framework that identifies safety-critical attention heads through global optimization over all heads simultaneously. We employ two complementary activation repatching strategies: Harmful Patching and Zero Ablation. These strategies identify two spatially distinct sets of safety vectors with consistently low overlap, termed Malicious Injection Vectors and Safety Suppression Vectors, demonstrating that aligned LLMs maintain separate functional pathways for safety purposes. Through systematic analyses, we find that complete safety breakdown occurs when approximately 30\% of total heads are repatched across all models. Building on these insights, we develop a novel inference-time white-box jailbreak method that exploits the identified safety vectors through activation repatching. Our attack substantially outperforms existing white-box attacks across all test models, providing strong evidence for the effectiveness of the proposed GOSV framework on LLM safety interpretability.
Abstract:Vision-Language Pre-training (VLP) models demonstrate strong performance across various downstream tasks by learning from large-scale image-text pairs through contrastive pretraining. The release of extensive English image-text datasets (e.g., COYO-700M and LAION-400M) has enabled widespread adoption of models such as CLIP and SigLIP in tasks including cross-modal retrieval and image captioning. However, the advancement of Chinese vision-language pretraining has substantially lagged behind, due to the scarcity of high-quality Chinese image-text data. To address this gap, we develop a comprehensive pipeline for constructing a high-quality Chinese cross-modal dataset. As a result, we propose DanQing, which contains 100 million image-text pairs collected from Common Crawl. Different from existing datasets, DanQing is curated through a more rigorous selection process, yielding superior data quality. Moreover, DanQing is primarily built from 2024-2025 web data, enabling models to better capture evolving semantic trends and thus offering greater practical utility. We compare DanQing with existing datasets by continual pre-training of the SigLIP2 model. Experimental results show that DanQing consistently achieves superior performance across a range of Chinese downstream tasks, including zero-shot classification, cross-modal retrieval, and LMM-based evaluations. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
Abstract:As a popular e-commerce platform, Kuaishou E-shop provides precise personalized product recommendations to tens of millions of users every day. To better respond real-time user feedback, we have deployed an interactive recommender system (IRS) alongside our core homepage recommender system. This IRS is triggered by user click on homepage, and generates a series of highly relevant recommendations based on the clicked item to meet focused browsing demands. Different from traditional e-commerce RecSys, the full-screen UI and immersive swiping down functionality present two distinct challenges for regular ranking system. First, there exists explicit interference (overlap or conflicts) between ranking objectives, i.e., conversion, view and swipe down. This is because there are intrinsic behavioral co-occurrences under the premise of immersive browsing and swiping down functionality. Second, the ranking system is prone to temporal greedy traps in sequential recommendation slot transitions, which is caused by full-screen UI design. To alleviate these challenges, we propose a novel Spatio-temporal collaborative ranking (STCRank) framework to achieve collaboration between multi-objectives within one slot (spatial) and between multiple sequential recommondation slots. In multi-objective collaboration (MOC) module, we push Pareto frontier by mitigating the objective overlaps and conflicts. In multi-slot collaboration (MSC) module, we achieve global optima on overall sequential slots by dual-stage look-ahead ranking mechanism. Extensive experiments demonstrate our proposed method brings about purchase and DAU co-growth. The proposed system has been already deployed at Kuaishou E-shop since 2025.6.
Abstract:Magnetic resonance imaging (MRI) plays a vital role in clinical diagnostics, yet it remains hindered by long acquisition times and motion artifacts. Multi-contrast MRI reconstruction has emerged as a promising direction by leveraging complementary information from fully-sampled reference scans. However, existing approaches suffer from three major limitations: (1) superficial reference fusion strategies, such as simple concatenation, (2) insufficient utilization of the complementary information provided by the reference contrast, and (3) fixed under-sampling patterns. We propose an efficient and interpretable frequency error-guided reconstruction framework to tackle these issues. We first employ a conditional diffusion model to learn a Frequency Error Prior (FEP), which is then incorporated into a unified framework for jointly optimizing both the under-sampling pattern and the reconstruction network. The proposed reconstruction model employs a model-driven deep unfolding framework that jointly exploits frequency- and image-domain information. In addition, a spatial alignment module and a reference feature decomposition strategy are incorporated to improve reconstruction quality and bridge model-based optimization with data-driven learning for improved physical interpretability. Comprehensive validation across multiple imaging modalities, acceleration rates (4-30x), and sampling schemes demonstrates consistent superiority over state-of-the-art methods in both quantitative metrics and visual quality. All codes are available at https://github.com/fangxinming/JUF-MRI.
Abstract:We introduce the Markovian Pre-trained Transformer (MPT) for next-item recommendation, a transferable model fully pre-trained on synthetic Markov chains, yet capable of achieving state-of-the-art performance by fine-tuning a lightweight adaptor. This counterintuitive success stems from the observation of the `Markovian' nature: advanced sequential recommenders coincidentally rely on the latest interaction to make predictions, while the historical interactions serve mainly as auxiliary cues for inferring the user's general, non-sequential identity. This characteristic necessitates the capabilities of a universal recommendation model to effectively summarize the user sequence, with particular emphasis on the latest interaction. MPT inherently has the potential to be universal and transferable. On the one hand, when trained to predict the next state of Markov chains, it acquires the capabilities to estimate transition probabilities from the context (one adaptive manner for summarizing sequences) and attend to the last state to ensure accurate state transitions. On the other hand, unlike the heterogeneous interaction data, an unlimited amount of controllable Markov chains is available to boost the model capacity. We conduct extensive experiments on five public datasets from three distinct platforms to validate the superiority of Markovian pre-training over traditional recommendation pre-training and recent language pre-training paradigms.
Abstract:The independent evolution of intelligence in biological and artificial systems offers a unique opportunity to identify its fundamental computational principles. Here we show that large language models spontaneously develop synergistic cores -- components where information integration exceeds individual parts -- remarkably similar to those in the human brain. Using principles of information decomposition across multiple LLM model families and architectures, we find that areas in middle layers exhibit synergistic processing while early and late layers rely on redundancy, mirroring the informational organisation in biological brains. This organisation emerges through learning and is absent in randomly initialised networks. Crucially, ablating synergistic components causes disproportionate behavioural changes and performance loss, aligning with theoretical predictions about the fragility of synergy. Moreover, fine-tuning synergistic regions through reinforcement learning yields significantly greater performance gains than training redundant components, yet supervised fine-tuning shows no such advantage. This convergence suggests that synergistic information processing is a fundamental property of intelligence, providing targets for principled model design and testable predictions for biological intelligence.
Abstract:Large Language Model (LLM)-based agents significantly extend the utility of LLMs by interacting with dynamic environments. However, enabling agents to continually learn new tasks without catastrophic forgetting remains a critical challenge, known as the stability-plasticity dilemma. In this work, we argue that this dilemma fundamentally arises from the failure to explicitly distinguish between common knowledge shared across tasks and conflicting knowledge introduced by task-specific interference. To address this, we propose Agent-Dice, a parameter fusion framework based on directional consensus evaluation. Concretely, Agent-Dice disentangles knowledge updates through a two-stage process: geometric consensus filtering to prune conflicting gradients, and curvature-based importance weighting to amplify shared semantics. We provide a rigorous theoretical analysis that establishes the validity of the proposed fusion scheme and offers insight into the origins of the stability-plasticity dilemma. Extensive experiments on GUI agents and tool-use agent domains demonstrate that Agent-Dice exhibits outstanding continual learning performance with minimal computational overhead and parameter updates. The codes are available at https://github.com/Wuzheng02/Agent-Dice.
Abstract:Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
Abstract:Recommendation for live-streaming e-commerce is gaining increasing attention due to the explosive growth of the live streaming economy. Different from traditional e-commerce, live-streaming e-commerce shifts the focus from products to streamers, which requires ranking mechanism to balance both purchases and user-streamer interactions for long-term ecology. To trade off multiple objectives, a popular solution is to build an ensemble model to integrate multi-objective scores into a unified score. The ensemble model is usually supervised by multiple independent binary classification losses of all objectives. However, this paradigm suffers from two inherent limitations. First, the optimization direction of the binary classification task is misaligned with the ranking task (evaluated by AUC). Second, this paradigm overlooks the alignment between objectives, e.g., comment and buy behaviors are partially dependent which can be revealed in labels correlations. The model can achieve better trade-offs if it learns the aligned parts of ranking abilities among different objectives. To mitigate these limitations, we propose a novel multi-objective ensemble framework HarmonRank to fulfill both alignment to the ranking task and alignment among objectives. For alignment to ranking, we formulate ranking metric AUC as a rank-sum problem and utilize differentiable ranking techniques for ranking-oriented optimization. For inter-objective alignment, we change the original one-step ensemble paradigm to a two-step relation-aware ensemble scheme. Extensive offline experiments results on two industrial datasets and online experiments demonstrate that our approach significantly outperforms existing state-of-the-art methods. The proposed method has been fully deployed in Kuaishou's live-streaming e-commerce recommendation platform with 400 million DAUs, contributing over 2% purchase gain.
Abstract:Audio-video joint generation has progressed rapidly, yet substantial challenges still remain. Non-commercial approaches still suffer audio-visual asynchrony, poor lip-speech alignment, and unimodal degradation, which can be stemmed from weak audio-visual correspondence modeling, limited generalization, and scarce high-quality dense-caption data. To address these issues, we introduce Klear and delve into three axes--model architecture, training strategy, and data curation. Architecturally, we adopt a single-tower design with unified DiT blocks and an Omni-Full Attention mechanism, achieving tight audio-visual alignment and strong scalability. Training-wise, we adopt a progressive multitask regime--random modality masking to joint optimization across tasks, and a multistage curriculum, yielding robust representations, strengthening A-V aligned world knowledge, and preventing unimodal collapse. For datasets, we present the first large-scale audio-video dataset with dense captions, and introduce a novel automated data-construction pipeline which annotates and filters millions of diverse, high-quality, strictly aligned audio-video-caption triplets. Building on this, Klear scales to large datasets, delivering high-fidelity, semantically and temporally aligned, instruction-following generation in both joint and unimodal settings while generalizing robustly to out-of-distribution scenarios. Across tasks, it substantially outperforms prior methods by a large margin and achieves performance comparable to Veo 3, offering a unified, scalable path toward next-generation audio-video synthesis.