Aalborg University
Abstract:Synthetic datasets are being recognized in the deep learning realm as a valuable alternative to exhaustively labeled real data. One such synthetic data generation method is Formula Driven Supervised Learning (FDSL), which can provide an infinite number of perfectly labeled data through a formula driven approach, such as fractals or contours. FDSL does not have common drawbacks like manual labor, privacy and other ethical concerns. In this work we generate 3D fractals using 3D Iterated Function Systems (IFS) for pre-training an action recognition model. The fractals are temporally transformed to form a video that is used as a pre-training dataset for downstream task of action recognition. We find that standard methods of generating fractals are slow and produce degenerate 3D fractals. Therefore, we systematically explore alternative ways of generating fractals and finds that overly-restrictive approaches, while generating aesthetically pleasing fractals, are detrimental for downstream task performance. We propose a novel method, Targeted Smart Filtering, to address both the generation speed and fractal diversity issue. The method reports roughly 100 times faster sampling speed and achieves superior downstream performance against other 3D fractal filtering methods.
Abstract:Hyperbolic representation learning has been widely used to extract implicit hierarchies within data, and recently it has found its way to the open-world classification task of Generalized Category Discovery (GCD). However, prior hyperbolic GCD methods only use hyperbolic geometry for representation learning and transform back to Euclidean geometry when clustering. We hypothesize this is suboptimal. Therefore, we present Hyperbolic Clustered GCD (HC-GCD), which learns embeddings in the Lorentz Hyperboloid model of hyperbolic geometry, and clusters these embeddings directly in hyperbolic space using a hyperbolic K-Means algorithm. We test our model on the Semantic Shift Benchmark datasets, and demonstrate that HC-GCD is on par with the previous state-of-the-art hyperbolic GCD method. Furthermore, we show that using hyperbolic K-Means leads to better accuracy than Euclidean K-Means. We carry out ablation studies showing that clipping the norm of the Euclidean embeddings leads to decreased accuracy in clustering unseen classes, and increased accuracy for seen classes, while the overall accuracy is dataset dependent. We also show that using hyperbolic K-Means leads to more consistent clusters when varying the label granularity.
Abstract:In recent years, the underwater image formation model has found extensive use in the generation of synthetic underwater data. Although many approaches focus on scenes primarily affected by discoloration, they often overlook the model's ability to capture the complex, distance-dependent visibility loss present in highly turbid environments. In this work, we propose an improved synthetic data generation pipeline that includes the commonly omitted forward scattering term, while also considering a nonuniform medium. Additionally, we collected the BUCKET dataset under controlled turbidity conditions to acquire real turbid footage with the corresponding reference images. Our results demonstrate qualitative improvements over the reference model, particularly under increasing turbidity, with a selection rate of 82. 5\% by survey participants. Data and code can be accessed on the project page: vap.aau.dk/sea-ing-through-scattered-rays.
Abstract:The SoccerNet 2025 Challenges mark the fifth annual edition of the SoccerNet open benchmarking effort, dedicated to advancing computer vision research in football video understanding. This year's challenges span four vision-based tasks: (1) Team Ball Action Spotting, focused on detecting ball-related actions in football broadcasts and assigning actions to teams; (2) Monocular Depth Estimation, targeting the recovery of scene geometry from single-camera broadcast clips through relative depth estimation for each pixel; (3) Multi-View Foul Recognition, requiring the analysis of multiple synchronized camera views to classify fouls and their severity; and (4) Game State Reconstruction, aimed at localizing and identifying all players from a broadcast video to reconstruct the game state on a 2D top-view of the field. Across all tasks, participants were provided with large-scale annotated datasets, unified evaluation protocols, and strong baselines as starting points. This report presents the results of each challenge, highlights the top-performing solutions, and provides insights into the progress made by the community. The SoccerNet Challenges continue to serve as a driving force for reproducible, open research at the intersection of computer vision, artificial intelligence, and sports. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
Abstract:Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
Abstract:In this paper, we introduce a 3D Gaussian Splatting (3DGS)-based pipeline for stereo dataset generation, offering an efficient alternative to Neural Radiance Fields (NeRF)-based methods. To obtain useful geometry estimates, we explore utilizing the reconstructed geometry from the explicit 3D representations as well as depth estimates from the FoundationStereo model in an expert knowledge transfer setup. We find that when fine-tuning stereo models on 3DGS-generated datasets, we demonstrate competitive performance in zero-shot generalization benchmarks. When using the reconstructed geometry directly, we observe that it is often noisy and contains artifacts, which propagate noise to the trained model. In contrast, we find that the disparity estimates from FoundationStereo are cleaner and consequently result in a better performance on the zero-shot generalization benchmarks. Our method highlights the potential for low-cost, high-fidelity dataset creation and fast fine-tuning for deep stereo models. Moreover, we also reveal that while the latest Gaussian Splatting based methods have achieved superior performance on established benchmarks, their robustness falls short in challenging in-the-wild settings warranting further exploration.
Abstract:Training neural networks for tasks such as 3D point cloud semantic segmentation demands extensive datasets, yet obtaining and annotating real-world point clouds is costly and labor-intensive. This work aims to introduce a novel pipeline for generating realistic synthetic data, by leveraging 3D Gaussian Splatting (3DGS) and Gaussian Opacity Fields (GOF) to generate 3D assets of multiple different agricultural vehicles instead of using generic models. These assets are placed in a simulated environment, where the point clouds are generated using a simulated LiDAR. This is a flexible approach that allows changing the LiDAR specifications without incurring additional costs. We evaluated the impact of synthetic data on segmentation models such as PointNet++, Point Transformer V3, and OACNN, by training and validating the models only on synthetic data. Remarkably, the PTv3 model had an mIoU of 91.35\%, a noteworthy result given that the model had neither been trained nor validated on any real data. Further studies even suggested that in certain scenarios the models trained only on synthetically generated data performed better than models trained on real-world data. Finally, experiments demonstrated that the models can generalize across semantic classes, enabling accurate predictions on mesh models they were never trained on.
Abstract:Artificial intelligence has revolutionized the way we analyze sports videos, whether to understand the actions of games in long untrimmed videos or to anticipate the player's motion in future frames. Despite these efforts, little attention has been given to anticipating game actions before they occur. In this work, we introduce the task of action anticipation for football broadcast videos, which consists in predicting future actions in unobserved future frames, within a five- or ten-second anticipation window. To benchmark this task, we release a new dataset, namely the SoccerNet Ball Action Anticipation dataset, based on SoccerNet Ball Action Spotting. Additionally, we propose a Football Action ANticipation TRAnsformer (FAANTRA), a baseline method that adapts FUTR, a state-of-the-art action anticipation model, to predict ball-related actions. To evaluate action anticipation, we introduce new metrics, including mAP@$\delta$, which evaluates the temporal precision of predicted future actions, as well as mAP@$\infty$, which evaluates their occurrence within the anticipation window. We also conduct extensive ablation studies to examine the impact of various task settings, input configurations, and model architectures. Experimental results highlight both the feasibility and challenges of action anticipation in football videos, providing valuable insights into the design of predictive models for sports analytics. By forecasting actions before they unfold, our work will enable applications in automated broadcasting, tactical analysis, and player decision-making. Our dataset and code are publicly available at https://github.com/MohamadDalal/FAANTRA.
Abstract:Action Valuation (AV) has emerged as a key topic in Sports Analytics, offering valuable insights by assigning scores to individual actions based on their contribution to desired outcomes. Despite a few surveys addressing related concepts such as Player Valuation, there is no comprehensive review dedicated to an in-depth analysis of AV across different sports. In this survey, we introduce a taxonomy with nine dimensions related to the AV task, encompassing data, methodological approaches, evaluation techniques, and practical applications. Through this analysis, we aim to identify the essential characteristics of effective AV methods, highlight existing gaps in research, and propose future directions for advancing the field.
Abstract:In Pose-based Video Anomaly Detection prior art is rooted on the assumption that abnormal events can be mostly regarded as a result of uncommon human behavior. Opposed to utilizing skeleton representations of humans, however, we investigate the potential of learning recurrent motion patterns of normal human behavior using 2D contours. Keeping all advantages of pose-based methods, such as increased object anonymization, the shift from human skeletons to contours is hypothesized to leave the opportunity to cover more object categories open for future research. We propose formulating the problem as a regression and a classification task, and additionally explore two distinct data representation techniques for contours. To further reduce the computational complexity of Pose-based Video Anomaly Detection solutions, all methods in this study are based on shallow Neural Networks from the field of Deep Learning, and evaluated on the three most prominent benchmark datasets within Video Anomaly Detection and their human-related counterparts, totaling six datasets. Our results indicate that this novel perspective on Pose-based Video Anomaly Detection marks a promising direction for future research.