Alert button
Picture for Yujie Zhong

Yujie Zhong

Alert button

SoccerNet 2023 Challenges Results

Sep 12, 2023
Anthony Cioppa, Silvio Giancola, Vladimir Somers, Floriane Magera, Xin Zhou, Hassan Mkhallati, Adrien Deliège, Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdullah Kamal, Adrien Maglo, Albert Clapés, Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott, Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser, Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari Koguchi, Håkan Ardö, Ibrahim Salah, Ido Yerushalmy, Iftikar Muhammad, Ikuma Uchida, Ishay Be'ery, Jaonary Rabarisoa, Jeongae Lee, Jiajun Fu, Jianqin Yin, Jinghang Xu, Jongho Nang, Julien Denize, Junjie Li, Junpei Zhang, Juntae Kim, Kamil Synowiec, Kenji Kobayashi, Kexin Zhang, Konrad Habel, Kota Nakajima, Licheng Jiao, Lin Ma, Lizhi Wang, Luping Wang, Menglong Li, Mengying Zhou, Mohamed Nasr, Mohamed Abdelwahed, Mykola Liashuha, Nikolay Falaleev, Norbert Oswald, Qiong Jia, Quoc-Cuong Pham, Ran Song, Romain Hérault, Rui Peng, Ruilong Chen, Ruixuan Liu, Ruslan Baikulov, Ryuto Fukushima, Sergio Escalera, Seungcheon Lee, Shimin Chen, Shouhong Ding, Taiga Someya, Thomas B. Moeslund, Tianjiao Li, Wei Shen, Wei Zhang, Wei Li, Wei Dai, Weixin Luo, Wending Zhao, Wenjie Zhang, Xinquan Yang, Yanbiao Ma, Yeeun Joo, Yingsen Zeng, Yiyang Gan, Yongqiang Zhu, Yujie Zhong, Zheng Ruan, Zhiheng Li, Zhijian Huang, Ziyu Meng

The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.

Viaarxiv icon

Temporal Action Localization with Enhanced Instant Discriminability

Sep 11, 2023
Dingfeng Shi, Qiong Cao, Yujie Zhong, Shan An, Jian Cheng, Haogang Zhu, Dacheng Tao

Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video. The unclear boundaries of actions in videos often result in imprecise predictions of action boundaries by existing methods. To resolve this issue, we propose a one-stage framework named TriDet. First, we propose a Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. Then, we analyze the rank-loss problem (i.e. instant discriminability deterioration) in transformer-based methods and propose an efficient scalable-granularity perception (SGP) layer to mitigate this issue. To further push the limit of instant discriminability in the video backbone, we leverage the strong representation capability of pretrained large models and investigate their performance on TAD. Last, considering the adequate spatial-temporal context for classification, we design a decoupled feature pyramid network with separate feature pyramids to incorporate rich spatial context from the large model for localization. Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets, including hierarchical (multilabel) TAD datasets.

* An extended version of the CVPR paper arXiv:2303.07347, submitted to IJCV 
Viaarxiv icon

MotionTrack: Learning Motion Predictor for Multiple Object Tracking

Jun 05, 2023
Changcheng Xiao, Qiong Cao, Yujie Zhong, Long Lan, Xiang Zhang, Huayue Cai, Zhigang Luo, Dacheng Tao

Figure 1 for MotionTrack: Learning Motion Predictor for Multiple Object Tracking
Figure 2 for MotionTrack: Learning Motion Predictor for Multiple Object Tracking
Figure 3 for MotionTrack: Learning Motion Predictor for Multiple Object Tracking
Figure 4 for MotionTrack: Learning Motion Predictor for Multiple Object Tracking

Significant advancements have been made in multi-object tracking (MOT) with the development of detection and re-identification (ReID) techniques. Despite these developments, the task of accurately tracking objects in scenarios with homogeneous appearance and heterogeneous motion remains challenging due to the insufficient discriminability of ReID features and the predominant use of linear motion models in MOT. In this context, we present a novel learnable motion predictor, named MotionTrack, which comprehensively incorporates two levels of granularity of motion features to enhance the modeling of temporal dynamics and facilitate accurate future motion prediction of individual objects. Specifically, the proposed approach adopts a self-attention mechanism to capture token-level information and a Dynamic MLP layer to model channel-level features. MotionTrack is a simple, online tracking approach. Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on demanding datasets such as SportsMOT and Dancetrack, which feature highly nonlinear object motion. Notably, without fine-tuning on target datasets, MotionTrack also exhibits competitive performance on conventional benchmarks including MOT17 and MOT20.

Viaarxiv icon

Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models

Jun 01, 2023
Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, Weidi Xie

Figure 1 for Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models
Figure 2 for Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models
Figure 3 for Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models
Figure 4 for Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models

Generative models have recently exhibited exceptional capabilities in various scenarios, for example, image generation based on text description. In this work, we focus on the task of generating a series of coherent image sequence based on a given storyline, denoted as open-ended visual storytelling. We make the following three contributions: (i) to fulfill the task of visual storytelling, we introduce two modules into a pre-trained stable diffusion model, and construct an auto-regressive image generator, termed as StoryGen, that enables to generate the current frame by conditioning on both a text prompt and a preceding frame; (ii) to train our proposed model, we collect paired image and text samples by sourcing from various online sources, such as videos, E-books, and establish a data processing pipeline for constructing a diverse dataset, named StorySalon, with a far larger vocabulary than existing animation-specific datasets; (iii) we adopt a three-stage curriculum training strategy, that enables style transfer, visual context conditioning, and human feedback alignment, respectively. Quantitative experiments and human evaluation have validated the superiority of our proposed model, in terms of image quality, style consistency, content consistency, and visual-language alignment. We will make the code, model, and dataset publicly available to the research community.

* Technical report 
Viaarxiv icon

Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking

May 22, 2023
Feng Yan, Weixin Luo, Yujie Zhong, Yiyang Gan, Lin Ma

Figure 1 for Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking
Figure 2 for Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking
Figure 3 for Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking
Figure 4 for Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking

Existing end-to-end Multi-Object Tracking (e2e-MOT) methods have not surpassed non-end-to-end tracking-by-detection methods. One potential reason is its label assignment strategy during training that consistently binds the tracked objects with tracking queries and then assigns the few newborns to detection queries. With one-to-one bipartite matching, such an assignment will yield unbalanced training, i.e., scarce positive samples for detection queries, especially for an enclosed scene, as the majority of the newborns come on stage at the beginning of videos. Thus, e2e-MOT will be easier to yield a tracking terminal without renewal or re-initialization, compared to other tracking-by-detection methods. To alleviate this problem, we present Co-MOT, a simple and effective method to facilitate e2e-MOT by a novel coopetition label assignment with a shadow concept. Specifically, we add tracked objects to the matching targets for detection queries when performing the label assignment for training the intermediate decoders. For query initialization, we expand each query by a set of shadow counterparts with limited disturbance to itself. With extensive ablations, Co-MOT achieves superior performance without extra costs, e.g., 69.4% HOTA on DanceTrack and 52.8% TETA on BDD100K. Impressively, Co-MOT only requires 38\% FLOPs of MOTRv2 to attain a similar performance, resulting in the 1.4$\times$ faster inference speed.

Viaarxiv icon

Zero-Shot Semantic Segmentation with Decoupled One-Pass Network

Apr 03, 2023
Cong Han, Yujie Zhong, Dengjie Li, Kai Han, Lin Ma

Figure 1 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 2 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 3 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 4 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network

Recently, the zero-shot semantic segmentation problem has attracted increasing attention, and the best performing methods are based on two-stream networks: one stream for proposal mask generation and the other for segment classification using a pre-trained visual-language model. However, existing two-stream methods require passing a great number of (up to a hundred) image crops into the visuallanguage model, which is highly inefficient. To address the problem, we propose a network that only needs a single pass through the visual-language model for each input image. Specifically, we first propose a novel network adaptation approach, termed patch severance, to restrict the harmful interference between the patch embeddings in the pre-trained visual encoder. We then propose classification anchor learning to encourage the network to spatially focus on more discriminative features for classification. Extensive experiments demonstrate that the proposed method achieves outstanding performance, surpassing state-of-theart methods while being 4 to 7 times faster at inference. We release our code at https://github.com/CongHan0808/DeOP.git.

* 13pages, 9 figures 
Viaarxiv icon

Adaptive Sparse Pairwise Loss for Object Re-Identification

Mar 31, 2023
Xiao Zhou, Yujie Zhong, Zhen Cheng, Fan Liang, Lin Ma

Figure 1 for Adaptive Sparse Pairwise Loss for Object Re-Identification
Figure 2 for Adaptive Sparse Pairwise Loss for Object Re-Identification
Figure 3 for Adaptive Sparse Pairwise Loss for Object Re-Identification
Figure 4 for Adaptive Sparse Pairwise Loss for Object Re-Identification

Object re-identification (ReID) aims to find instances with the same identity as the given probe from a large gallery. Pairwise losses play an important role in training a strong ReID network. Existing pairwise losses densely exploit each instance as an anchor and sample its triplets in a mini-batch. This dense sampling mechanism inevitably introduces positive pairs that share few visual similarities, which can be harmful to the training. To address this problem, we propose a novel loss paradigm termed Sparse Pairwise (SP) loss that only leverages few appropriate pairs for each class in a mini-batch, and empirically demonstrate that it is sufficient for the ReID tasks. Based on the proposed loss framework, we propose an adaptive positive mining strategy that can dynamically adapt to diverse intra-class variations. Extensive experiments show that SP loss and its adaptive variant AdaSP loss outperform other pairwise losses, and achieve state-of-the-art performance across several ReID benchmarks. Code is available at https://github.com/Astaxanthin/AdaSP.

* Accepted by CVPR 2023 
Viaarxiv icon

TriDet: Temporal Action Detection with Relative Boundary Modeling

Mar 16, 2023
Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, Dacheng Tao

Figure 1 for TriDet: Temporal Action Detection with Relative Boundary Modeling
Figure 2 for TriDet: Temporal Action Detection with Relative Boundary Modeling
Figure 3 for TriDet: Temporal Action Detection with Relative Boundary Modeling
Figure 4 for TriDet: Temporal Action Detection with Relative Boundary Modeling

In this paper, we present a one-stage framework TriDet for temporal action detection. Existing methods often suffer from imprecise boundary predictions due to the ambiguous action boundaries in videos. To alleviate this problem, we propose a novel Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. In the feature pyramid of TriDet, we propose an efficient Scalable-Granularity Perception (SGP) layer to mitigate the rank loss problem of self-attention that takes place in the video features and aggregate information across different temporal granularities. Benefiting from the Trident-head and the SGP-based feature pyramid, TriDet achieves state-of-the-art performance on three challenging benchmarks: THUMOS14, HACS and EPIC-KITCHEN 100, with lower computational costs, compared to previous methods. For example, TriDet hits an average mAP of $69.3\%$ on THUMOS14, outperforming the previous best by $2.5\%$, but with only $74.6\%$ of its latency. The code is released to https://github.com/sssste/TriDet.

* CVPR2023; Temporal Action Detection; Temporal Action Localization 
Viaarxiv icon

DiP: Learning Discriminative Implicit Parts for Person Re-Identification

Dec 24, 2022
Dengjie Li, Siyu Chen, Yujie Zhong, Fan Liang, Lin Ma

Figure 1 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 2 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 3 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 4 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification

In person re-identification (ReID) tasks, many works explore the learning of part features to improve the performance over global image features. Existing methods extract part features in an explicit manner, by either using a hand-designed image division or keypoints obtained with external visual systems. In this work, we propose to learn Discriminative implicit Parts (DiPs) which are decoupled from explicit body parts. Therefore, DiPs can learn to extract any discriminative features that can benefit in distinguishing identities, which is beyond predefined body parts (such as accessories). Moreover, we propose a novel implicit position to give a geometric interpretation for each DiP. The implicit position can also serve as a learning signal to encourage DiPs to be more position-equivariant with the identity in the image. Lastly, a set of attributes and auxiliary losses are introduced to further improve the learning of DiPs. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple person ReID benchmarks.

Viaarxiv icon