Alert button
Picture for Wei Zhang

Wei Zhang

Alert button

PanoVOS: Bridging Non-panoramic and Panoramic Views with Transformer for Video Segmentation

Sep 22, 2023
Shilin Yan, Xiaohao Xu, Lingyi Hong, Wenchao Chen, Wenqiang Zhang, Wei Zhang

Panoramic videos contain richer spatial information and have attracted tremendous amounts of attention due to their exceptional experience in some fields such as autonomous driving and virtual reality. However, existing datasets for video segmentation only focus on conventional planar images. To address the challenge, in this paper, we present a panoramic video dataset, PanoVOS. The dataset provides 150 videos with high video resolutions and diverse motions. To quantify the domain gap between 2D planar videos and panoramic videos, we evaluate 15 off-the-shelf video object segmentation (VOS) models on PanoVOS. Through error analysis, we found that all of them fail to tackle pixel-level content discontinues of panoramic videos. Thus, we present a Panoramic Space Consistency Transformer (PSCFormer), which can effectively utilize the semantic boundary information of the previous frame for pixel-level matching with the current frame. Extensive experiments demonstrate that compared with the previous SOTA models, our PSCFormer network exhibits a great advantage in terms of segmentation results under the panoramic setting. Our dataset poses new challenges in panoramic VOS and we hope that our PanoVOS can advance the development of panoramic segmentation/tracking.

Viaarxiv icon

Simulation-to-reality UAV Fault Diagnosis in windy environments

Sep 21, 2023
Wei Zhang, Junjie Tong, Fang Liao, Yunfeng Zhang

Monitoring propeller failures is vital to maintain the safe and reliable operation of quadrotor UAVs. The simulation-to-reality UAV fault diagnosis technique offer a secure and economical approach to identify faults in propellers. However, classifiers trained with simulated data perform poorly in real flights due to the wind disturbance in outdoor scenarios. In this work, we propose an uncertainty-based fault classifier (UFC) to address the challenge of sim-to-real UAV fault diagnosis in windy scenarios. It uses the ensemble of difference-based deep convolutional neural networks (EDDCNN) to reduce model variance and bias. Moreover, it employs an uncertainty-based decision framework to filter out uncertain predictions. Experimental results demonstrate that the UFC can achieve 100% fault-diagnosis accuracy with a data usage rate of 33.6% in the windy outdoor scenario.

* 8 pages, 8 figures 
Viaarxiv icon

Multi-view Fuzzy Representation Learning with Rules based Model

Sep 20, 2023
Wei Zhang, Zhaohong Deng, Te Zhang, Kup-Sze Choi, Shitong Wang

Unsupervised multi-view representation learning has been extensively studied for mining multi-view data. However, some critical challenges remain. On the one hand, the existing methods cannot explore multi-view data comprehensively since they usually learn a common representation between views, given that multi-view data contains both the common information between views and the specific information within each view. On the other hand, to mine the nonlinear relationship between data, kernel or neural network methods are commonly used for multi-view representation learning. However, these methods are lacking in interpretability. To this end, this paper proposes a new multi-view fuzzy representation learning method based on the interpretable Takagi-Sugeno-Kang (TSK) fuzzy system (MVRL_FS). The method realizes multi-view representation learning from two aspects. First, multi-view data are transformed into a high-dimensional fuzzy feature space, while the common information between views and specific information of each view are explored simultaneously. Second, a new regularization method based on L_(2,1)-norm regression is proposed to mine the consistency information between views, while the geometric structure of the data is preserved through the Laplacian graph. Finally, extensive experiments on many benchmark multi-view datasets are conducted to validate the superiority of the proposed method.

* This work has been accepted by IEEE Transactions on Knowledge and Data Engineering 
Viaarxiv icon

Learning Segment Similarity and Alignment in Large-Scale Content Based Video Retrieval

Sep 20, 2023
Chen Jiang, Kaiming Huang, Sifeng He, Xudong Yang, Wei Zhang, Xiaobo Zhang, Yuan Cheng, Lei Yang, Qing Wang, Furong Xu, Tan Pan, Wei Chu

With the explosive growth of web videos in recent years, large-scale Content-Based Video Retrieval (CBVR) becomes increasingly essential in video filtering, recommendation, and copyright protection. Segment-level CBVR (S-CBVR) locates the start and end time of similar segments in finer granularity, which is beneficial for user browsing efficiency and infringement detection especially in long video scenarios. The challenge of S-CBVR task is how to achieve high temporal alignment accuracy with efficient computation and low storage consumption. In this paper, we propose a Segment Similarity and Alignment Network (SSAN) in dealing with the challenge which is firstly trained end-to-end in S-CBVR. SSAN is based on two newly proposed modules in video retrieval: (1) An efficient Self-supervised Keyframe Extraction (SKE) module to reduce redundant frame features, (2) A robust Similarity Pattern Detection (SPD) module for temporal alignment. In comparison with uniform frame extraction, SKE not only saves feature storage and search time, but also introduces comparable accuracy and limited extra computation time. In terms of temporal alignment, SPD localizes similar segments with higher accuracy and efficiency than existing deep learning methods. Furthermore, we jointly train SSAN with SKE and SPD and achieve an end-to-end improvement. Meanwhile, the two key modules SKE and SPD can also be effectively inserted into other video retrieval pipelines and gain considerable performance improvements. Experimental results on public datasets show that SSAN can obtain higher alignment accuracy while saving storage and online query computational cost compared to existing methods.

* Accepted by ACM MM 2021 
Viaarxiv icon

An Empirical Study of Attention Networks for Semantic Segmentation

Sep 19, 2023
Hao Guo, Hongbiao Si, Guilin Jiang, Wei Zhang, Zhiyan Liu, Xuanyi Zhu, Xulong Zhang, Yang Liu

Semantic segmentation is a vital problem in computer vision. Recently, a common solution to semantic segmentation is the end-to-end convolution neural network, which is much more accurate than traditional methods.Recently, the decoders based on attention achieve state-of-the-art (SOTA) performance on various datasets. But these networks always are compared with the mIoU of previous SOTA networks to prove their superiority and ignore their characteristics without considering the computation complexity and precision in various categories, which is essential for engineering applications. Besides, the methods to analyze the FLOPs and memory are not consistent between different networks, which makes the comparison hard to be utilized. What's more, various methods utilize attention in semantic segmentation, but the conclusion of these methods is lacking. This paper first conducts experiments to analyze their computation complexity and compare their performance. Then it summarizes suitable scenes for these networks and concludes key points that should be concerned when constructing an attention network. Last it points out some future directions of the attention network.

* Accepted by the 7th APWeb-WAIM International Joint Conference on Web and Big Data. (APWeb 2023) 
Viaarxiv icon

SoccerNet 2023 Challenges Results

Sep 12, 2023
Anthony Cioppa, Silvio Giancola, Vladimir Somers, Floriane Magera, Xin Zhou, Hassan Mkhallati, Adrien Deliège, Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdullah Kamal, Adrien Maglo, Albert Clapés, Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott, Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser, Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari Koguchi, Håkan Ardö, Ibrahim Salah, Ido Yerushalmy, Iftikar Muhammad, Ikuma Uchida, Ishay Be'ery, Jaonary Rabarisoa, Jeongae Lee, Jiajun Fu, Jianqin Yin, Jinghang Xu, Jongho Nang, Julien Denize, Junjie Li, Junpei Zhang, Juntae Kim, Kamil Synowiec, Kenji Kobayashi, Kexin Zhang, Konrad Habel, Kota Nakajima, Licheng Jiao, Lin Ma, Lizhi Wang, Luping Wang, Menglong Li, Mengying Zhou, Mohamed Nasr, Mohamed Abdelwahed, Mykola Liashuha, Nikolay Falaleev, Norbert Oswald, Qiong Jia, Quoc-Cuong Pham, Ran Song, Romain Hérault, Rui Peng, Ruilong Chen, Ruixuan Liu, Ruslan Baikulov, Ryuto Fukushima, Sergio Escalera, Seungcheon Lee, Shimin Chen, Shouhong Ding, Taiga Someya, Thomas B. Moeslund, Tianjiao Li, Wei Shen, Wei Zhang, Wei Li, Wei Dai, Weixin Luo, Wending Zhao, Wenjie Zhang, Xinquan Yang, Yanbiao Ma, Yeeun Joo, Yingsen Zeng, Yiyang Gan, Yongqiang Zhu, Yujie Zhong, Zheng Ruan, Zhiheng Li, Zhijian Huang, Ziyu Meng

The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on Baselines and development kits can be found on

Viaarxiv icon

HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving

Sep 11, 2023
Xinpeng Ding, Jianhua Han, Hang Xu, Wei Zhang, Xiaomeng Li

Figure 1 for HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving
Figure 2 for HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving
Figure 3 for HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving
Figure 4 for HiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous Driving

Autonomous driving systems generally employ separate models for different tasks resulting in intricate designs. For the first time, we leverage singular multimodal large language models (MLLMs) to consolidate multiple autonomous driving tasks from videos, i.e., the Risk Object Localization and Intention and Suggestion Prediction (ROLISP) task. ROLISP uses natural language to simultaneously identify and interpret risk objects, understand ego-vehicle intentions, and provide motion suggestions, eliminating the necessity for task-specific architectures. However, lacking high-resolution (HR) information, existing MLLMs often miss small objects (e.g., traffic cones) and overly focus on salient ones (e.g., large trucks) when applied to ROLISP. We propose HiLM-D (Towards High-Resolution Understanding in MLLMs for Autonomous Driving), an efficient method to incorporate HR information into MLLMs for the ROLISP task. Especially, HiLM-D integrates two branches: (i) the low-resolution reasoning branch, can be any MLLMs, processes low-resolution videos to caption risk objects and discern ego-vehicle intentions/suggestions; (ii) the high-resolution perception branch (HR-PB), prominent to HiLM-D,, ingests HR images to enhance detection by capturing vision-specific HR feature maps and prioritizing all potential risks over merely salient objects. Our HR-PB serves as a plug-and-play module, seamlessly fitting into current MLLMs. Experiments on the ROLISP benchmark reveal HiLM-D's notable advantage over leading MLLMs, with improvements of 4.8% in BLEU-4 for captioning and 17.2% in mIoU for detection.

Viaarxiv icon

Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation

Sep 07, 2023
Jiaxi Gu, Shicong Wang, Haoyu Zhao, Tianyi Lu, Xing Zhang, Zuxuan Wu, Songcen Xu, Wei Zhang, Yu-Gang Jiang, Hang Xu

Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image synthesis, we study LDM for text-to-video generation, which is a formidable challenge due to the computational and memory constraints during both model training and inference. A single LDM is usually only capable of generating a very limited number of video frames. Some existing works focus on separate prediction models for generating more video frames, which suffer from additional training cost and frame-level jittering, however. In this paper, we propose a framework called "Reuse and Diffuse" dubbed $\textit{VidRD}$ to produce more frames following the frames already generated by an LDM. Conditioned on an initial video clip with a small number of frames, additional frames are iteratively generated by reusing the original latent features and following the previous diffusion process. Besides, for the autoencoder used for translation between pixel space and latent space, we inject temporal layers into its decoder and fine-tune these layers for higher temporal consistency. We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets including video datasets for action recognition and image-text datasets. Extensive experiments show that our method achieves good results in both quantitative and qualitative evaluations. Our project page is available $\href{}{here}$.

Viaarxiv icon

Towards High-Fidelity Text-Guided 3D Face Generation and Manipulation Using only Images

Aug 31, 2023
Cuican Yu, Guansong Lu, Yihan Zeng, Jian Sun, Xiaodan Liang, Huibin Li, Zongben Xu, Songcen Xu, Wei Zhang, Hang Xu

Generating 3D faces from textual descriptions has a multitude of applications, such as gaming, movie, and robotics. Recent progresses have demonstrated the success of unconditional 3D face generation and text-to-3D shape generation. However, due to the limited text-3D face data pairs, text-driven 3D face generation remains an open problem. In this paper, we propose a text-guided 3D faces generation method, refer as TG-3DFace, for generating realistic 3D faces using text guidance. Specifically, we adopt an unconditional 3D face generation framework and equip it with text conditions, which learns the text-guided 3D face generation with only text-2D face data. On top of that, we propose two text-to-face cross-modal alignment techniques, including the global contrastive learning and the fine-grained alignment module, to facilitate high semantic consistency between generated 3D faces and input texts. Besides, we present directional classifier guidance during the inference process, which encourages creativity for out-of-domain generations. Compared to the existing methods, TG-3DFace creates more realistic and aesthetically pleasing 3D faces, boosting 9% multi-view consistency (MVIC) over Latent3D. The rendered face images generated by TG-3DFace achieve higher FID and CLIP score than text-to-2D face/image generation models, demonstrating our superiority in generating realistic and semantic-consistent textures.

* accepted by ICCV 2023 
Viaarxiv icon

Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models

Aug 27, 2023
Kaiyuan Gao, Sunan He, Zhenyu He, Jiacheng Lin, QiZhi Pei, Jie Shao, Wei Zhang

Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in

Viaarxiv icon