Alibaba Group
Abstract:Recommender systems in concert with Large Language Models (LLMs) present promising avenues for generating semantically-informed recommendations. However, LLM-based recommenders exhibit a tendency to overemphasize semantic correlations within users' interaction history. When taking pretrained collaborative ID embeddings as input, LLM-based recommenders progressively weaken the inherent collaborative signals as the embeddings propagate through LLM backbones layer by layer, as opposed to traditional Transformer-based sequential models in which collaborative signals are typically preserved or even enhanced for state-of-the-art performance. To address this limitation, we introduce FreLLM4Rec, an approach designed to balance semantic and collaborative information from a spectral perspective. Item embeddings that incorporate both semantic and collaborative information are first purified using a Global Graph Low-Pass Filter (G-LPF) to preliminarily remove irrelevant high-frequency noise. Temporal Frequency Modulation (TFM) then actively preserves collaborative signal layer by layer. Note that the collaborative preservation capability of TFM is theoretically guaranteed by establishing a connection between the optimal but hard-to-implement local graph fourier filters and the suboptimal yet computationally efficient frequency-domain filters. Extensive experiments on four benchmark datasets demonstrate that FreLLM4Rec successfully mitigates collaborative signal attenuation and achieves competitive performance, with improvements of up to 8.00\% in NDCG@10 over the best baseline. Our findings provide insights into how LLMs process collaborative information and offer a principled approach for improving LLM-based recommendation systems.
Abstract:LiDAR-based Place Recognition (LPR) remains a critical task in Embodied Artificial Intelligence (AI) and Autonomous Driving, primarily addressing localization challenges in GPS-denied environments and supporting loop closure detection. Existing approaches reduce place recognition to a Euclidean distance-based metric learning task, neglecting the feature space's intrinsic structures and intra-class variances. Such Euclidean-centric formulation inherently limits the model's capacity to capture nonlinear data distributions, leading to suboptimal performance in complex environments and temporal-varying scenarios. To address these challenges, we propose a novel cross-view network based on an innovative fusion paradigm. Our framework introduces a pseudo-global information guidance mechanism that coordinates multi-modal branches to perform feature learning within a unified semantic space. Concurrently, we propose a Manifold Adaptation and Pairwise Variance-Locality Learning Metric that constructs a Symmetric Positive Definite (SPD) matrix to compute Mahalanobis distance, superseding traditional Euclidean distance metrics. This geometric formulation enables the model to accurately characterize intrinsic data distributions and capture complex inter-class dependencies within the feature space. Experimental results demonstrate that the proposed algorithm achieves competitive performance, particularly excelling in complex environmental conditions.
Abstract:It is a challenging task for ground robots to autonomously navigate in harsh environments due to the presence of non-trivial obstacles and uneven terrain. This requires trajectory planning that balances safety and efficiency. The primary challenge is to generate a feasible trajectory that prevents robot from tip-over while ensuring effective navigation. In this paper, we propose a capsizing-aware trajectory planner (CAP) to achieve trajectory planning on the uneven terrain. The tip-over stability of the robot on rough terrain is analyzed. Based on the tip-over stability, we define the traversable orientation, which indicates the safe range of robot orientations. This orientation is then incorporated into a capsizing-safety constraint for trajectory optimization. We employ a graph-based solver to compute a robust and feasible trajectory while adhering to the capsizing-safety constraint. Extensive simulation and real-world experiments validate the effectiveness and robustness of the proposed method. The results demonstrate that CAP outperforms existing state-of-the-art approaches, providing enhanced navigation performance on uneven terrains.
Abstract:Global KV-cache sharing has emerged as a key optimization for accelerating large language model (LLM) inference. However, it exposes a new class of timing side-channel attacks, enabling adversaries to infer sensitive user inputs via shared cache entries. Existing defenses, such as per-user isolation, eliminate leakage but degrade performance by up to 38.9% in time-to-first-token (TTFT), making them impractical for high-throughput deployment. To address this gap, we introduce SafeKV (Secure and Flexible KV Cache Sharing), a privacy-aware KV-cache management framework that selectively shares non-sensitive entries while confining sensitive content to private caches. SafeKV comprises three components: (i) a hybrid, multi-tier detection pipeline that integrates rule-based pattern matching, a general-purpose privacy detector, and context-aware validation; (ii) a unified radix-tree index that manages public and private entries across heterogeneous memory tiers (HBM, DRAM, SSD); and (iii) entropy-based access monitoring to detect and mitigate residual information leakage. Our evaluation shows that SafeKV mitigates 94% - 97% of timing-based side-channel attacks. Compared to per-user isolation method, SafeKV improves TTFT by up to 40.58% and throughput by up to 2.66X across diverse LLMs and workloads. SafeKV reduces cache-induced TTFT overhead from 50.41% to 11.74% on Qwen3-235B. By combining fine-grained privacy control with high cache reuse efficiency, SafeKV reclaims the performance advantages of global sharing while providing robust runtime privacy guarantees for LLM inference.
Abstract:No-reference image quality assessment (NR-IQA) aims to simulate the process of perceiving image quality aligned with subjective human perception. However, existing NR-IQA methods either focus on global representations that leads to limited insights into the semantically salient regions or employ a uniform weighting for region features that weakens the sensitivity to local quality variations. In this paper, we propose a fine-grained image quality assessment model, named RSFIQA, which integrates region-level distortion information to perceive multi-dimensional quality discrepancies. To enhance regional quality awareness, we first utilize the Segment Anything Model (SAM) to dynamically partition the input image into non-overlapping semantic regions. For each region, we teach a powerful Multi-modal Large Language Model (MLLM) to extract descriptive content and perceive multi-dimensional distortions, enabling a comprehensive understanding of both local semantics and quality degradations. To effectively leverage this information, we introduce Region-Aware Semantic Attention (RSA) mechanism, which generates a global attention map by aggregating fine-grained representations from local regions. In addition, RSFIQA is backbone-agnostic and can be seamlessly integrated into various deep neural network architectures. Extensive experiments demonstrate the robustness and effectiveness of the proposed method, which achieves competitive quality prediction performance across multiple benchmark datasets.
Abstract:This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git
Abstract:Automatic real personality recognition (RPR) aims to evaluate human real personality traits from their expressive behaviours. However, most existing solutions generally act as external observers to infer observers' personality impressions based on target individuals' expressive behaviours, which significantly deviate from their real personalities and consistently lead to inferior recognition performance. Inspired by the association between real personality and human internal cognition underlying the generation of expressive behaviours, we propose a novel RPR approach that efficiently simulates personalised internal cognition from easy-accessible external short audio-visual behaviours expressed by the target individual. The simulated personalised cognition, represented as a set of network weights that enforce the personalised network to reproduce the individual-specific facial reactions, is further encoded as a novel graph containing two-dimensional node and edge feature matrices, with a novel 2D Graph Neural Network (2D-GNN) proposed for inferring real personality traits from it. To simulate real personality-related cognition, an end-to-end strategy is designed to jointly train our cognition simulation, 2D graph construction, and personality recognition modules.
Abstract:Code large language models (Code LLMs) have made significant progress in code generation by translating natural language descriptions into functional code; however, real-world applications often demand stricter adherence to detailed requirements such as coding style, line count, and structural constraints, beyond mere correctness. To address this, the paper introduces forward and backward constraints generation to improve the instruction-following capabilities of Code LLMs in controlled code generation, ensuring outputs align more closely with human-defined guidelines. The authors further present IFEvalCode, a multilingual benchmark comprising 1.6K test samples across seven programming languages (Python, Java, JavaScript, TypeScript, Shell, C++, and C#), with each sample featuring both Chinese and English queries. Unlike existing benchmarks, IFEvalCode decouples evaluation into two metrics: correctness (Corr.) and instruction-following (Instr.), enabling a more nuanced assessment. Experiments on over 40 LLMs reveal that closed-source models outperform open-source ones in controllable code generation and highlight a significant gap between the models' ability to generate correct code versus code that precisely follows instructions.
Abstract:The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.
Abstract:Detecting tiny objects in remote sensing (RS) imagery has been a long-standing challenge due to their extremely limited spatial information, weak feature representations, and dense distributions across complex backgrounds. Despite numerous efforts devoted, mainstream detectors still underperform in such scenarios. To bridge this gap, we introduce RS-TinyNet, a multi-stage feature fusion and enhancement model explicitly tailored for RS tiny object detection in various RS scenarios. RS-TinyNet comes with two novel designs: tiny object saliency modeling and feature integrity reconstruction. Guided by these principles, we design three step-wise feature enhancement modules. Among them, the multi-dimensional collaborative attention (MDCA) module employs multi-dimensional attention to enhance the saliency of tiny objects. Additionally, the auxiliary reversible branch (ARB) and a progressive fusion detection head (PFDH) module are introduced to preserve information flow and fuse multi-level features to bridge semantic gaps and retain structural detail. Comprehensive experiments on public RS dataset AI-TOD show that our RS-TinyNet surpasses existing state-of-the-art (SOTA) detectors by 4.0% AP and 6.5% AP75. Evaluations on DIOR benchmark dataset further validate its superior detection performance in diverse RS scenarios. These results demonstrate that the proposed multi-stage feature fusion strategy offers an effective and practical solution for tiny object detection in complex RS environments.