Alibaba Group
Abstract:The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
Abstract:Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
Abstract:Deep neural networks generate and process large volumes of data, posing challenges for low-resource embedded systems. In-memory computing has been demonstrated as an efficient computing infrastructure and shows promise for embedded AI applications. Among newly-researched memory technologies, racetrack memory is a non-volatile technology that allows high data density fabrication, making it a good fit for in-memory computing. However, integrating in-memory arithmetic circuits with memory cells affects both the memory density and power efficiency. It remains challenging to build efficient in-memory arithmetic circuits on racetrack memory within area and energy constraints. To this end, we present an efficient in-memory convolutional neural network (CNN) accelerator optimized for use with racetrack memory. We design a series of fundamental arithmetic circuits as in-memory computing cells suited for multiply-and-accumulate operations. Moreover, we explore the design space of racetrack memory based systems and CNN model architectures, employing co-design to improve the efficiency and performance of performing CNN inference in racetrack memory while maintaining model accuracy. Our designed circuits and model-system co-optimization strategies achieve a small memory bank area with significant improvements in energy and performance for racetrack memory based embedded systems.
Abstract:Predicting port congestion is crucial for maintaining reliable global supply chains. Accurate forecasts enableimprovedshipment planning, reducedelaysand costs, and optimizeinventoryanddistributionstrategies, thereby ensuring timely deliveries and enhancing supply chain resilience. To achieve accurate predictions, analyzing vessel behavior and their stay times at specific port terminals is essential, focusing particularly on berth scheduling under various conditions. Crucially, the model must capture and learn the underlying priorities and patterns of berth scheduling. Berth scheduling and planning are influenced by a range of factors, including incoming vessel size, waiting times, and the status of vessels within the port terminal. By observing historical Automatic Identification System (AIS) positions of vessels, we reconstruct berth schedules, which are subsequently utilized to determine the reward function via Inverse Reinforcement Learning (IRL). For this purpose, we modeled a specific terminal at the Port of New York/New Jersey and developed Temporal-IRL. This Temporal-IRL model learns berth scheduling to predict vessel sequencing at the terminal and estimate vessel port stay, encompassing both waiting and berthing times, to forecast port congestion. Utilizing data from Maher Terminal spanning January 2015 to September 2023, we trained and tested the model, achieving demonstrably excellent results.
Abstract:Real-world object detection is a challenging task where the captured images/videos often suffer from complex degradations due to various adverse weather conditions such as rain, fog, snow, low-light, etc. Despite extensive prior efforts, most existing methods are designed for one specific type of adverse weather with constraints of poor generalization, under-utilization of visual features while handling various image degradations. Leveraging a theoretical analysis on how critical visual details are lost in adverse-weather images, we design UniDet-D, a unified framework that tackles the challenge of object detection under various adverse weather conditions, and achieves object detection and image restoration within a single network. Specifically, the proposed UniDet-D incorporates a dynamic spectral attention mechanism that adaptively emphasizes informative spectral components while suppressing irrelevant ones, enabling more robust and discriminative feature representation across various degradation types. Extensive experiments show that UniDet-D achieves superior detection accuracy across different types of adverse-weather degradation. Furthermore, UniDet-D demonstrates superior generalization towards unseen adverse weather conditions such as sandstorms and rain-fog mixtures, highlighting its great potential for real-world deployment.
Abstract:Generalizing locomotion policies across diverse legged robots with varying morphologies is a key challenge due to differences in observation/action dimensions and system dynamics. In this work, we propose Multi-Loco, a novel unified framework combining a morphology-agnostic generative diffusion model with a lightweight residual policy optimized via reinforcement learning (RL). The diffusion model captures morphology-invariant locomotion patterns from diverse cross-embodiment datasets, improving generalization and robustness. The residual policy is shared across all embodiments and refines the actions generated by the diffusion model, enhancing task-aware performance and robustness for real-world deployment. We evaluated our method with a rich library of four legged robots in both simulation and real-world experiments. Compared to a standard RL framework with PPO, our approach -- replacing the Gaussian policy with a diffusion model and residual term -- achieves a 10.35% average return improvement, with gains up to 13.57% in wheeled-biped locomotion tasks. These results highlight the benefits of cross-embodiment data and composite generative architectures in learning robust, generalized locomotion skills.
Abstract:Despite Contrastive Language-Image Pretraining (CLIP)'s remarkable capability to retrieve content across modalities, a substantial modality gap persists in its feature space. Intriguingly, we discover that off-the-shelf MLLMs (Multimodal Large Language Models) demonstrate powerful inherent modality alignment properties. While recent MLLM-based retrievers with unified architectures partially mitigate this gap, their reliance on coarse modality alignment mechanisms fundamentally limits their potential. In this work, We introduce MAPLE (Modality-Aligned Preference Learning for Embeddings), a novel framework that leverages the fine grained alignment priors inherent in MLLM to guide cross modal representation learning. MAPLE formulates the learning process as reinforcement learning with two key components: (1) Automatic preference data construction using off-the-shelf MLLM, and (2) a new Relative Preference Alignment (RPA) loss, which adapts Direct Preference Optimization (DPO) to the embedding learning setting. Experimental results show that our preference-guided alignment achieves substantial gains in fine-grained cross-modal retrieval, underscoring its effectiveness in handling nuanced semantic distinctions.
Abstract:Gene selection in high-dimensional genomic data is essential for understanding disease mechanisms and improving therapeutic outcomes. Traditional feature selection methods effectively identify predictive genes but often ignore complex biological pathways and regulatory networks, leading to unstable and biologically irrelevant signatures. Prior approaches, such as Lasso-based methods and statistical filtering, either focus solely on individual gene-outcome associations or fail to capture pathway-level interactions, presenting a key challenge: how to integrate biological pathway knowledge while maintaining statistical rigor in gene selection? To address this gap, we propose a novel two-stage framework that integrates statistical selection with biological pathway knowledge using multi-agent reinforcement learning (MARL). First, we introduce a pathway-guided pre-filtering strategy that leverages multiple statistical methods alongside KEGG pathway information for initial dimensionality reduction. Next, for refined selection, we model genes as collaborative agents in a MARL framework, where each agent optimizes both predictive power and biological relevance. Our framework incorporates pathway knowledge through Graph Neural Network-based state representations, a reward mechanism combining prediction performance with gene centrality and pathway coverage, and collaborative learning strategies using shared memory and a centralized critic component. Extensive experiments on multiple gene expression datasets demonstrate that our approach significantly improves both prediction accuracy and biological interpretability compared to traditional methods.
Abstract:Motion retargeting for specific robot from existing motion datasets is one critical step in transferring motion patterns from human behaviors to and across various robots. However, inconsistencies in topological structure, geometrical parameters as well as joint correspondence make it difficult to handle diverse embodiments with a unified retargeting architecture. In this work, we propose a novel unified graph-conditioned diffusion-based motion generation framework for retargeting reference motions across diverse embodiments. The intrinsic characteristics of heterogeneous embodiments are represented with graph structure that effectively captures topological and geometrical features of different robots. Such a graph-based encoding further allows for knowledge exploitation at the joint level with a customized attention mechanisms developed in this work. For lacking ground truth motions of the desired embodiment, we utilize an energy-based guidance formulated as retargeting losses to train the diffusion model. As one of the first cross-embodiment motion retargeting methods in robotics, our experiments validate that the proposed model can retarget motions across heterogeneous embodiments in a unified manner. Moreover, it demonstrates a certain degree of generalization to both diverse skeletal structures and similar motion patterns.
Abstract:Since the data volume of LiDAR point clouds is very huge, efficient compression is necessary to reduce their storage and transmission costs. However, existing learning-based compression methods do not exploit the inherent angular resolution of LiDAR and ignore the significant differences in the correlation of geometry information at different bitrates. The predictive geometry coding method in the geometry-based point cloud compression (G-PCC) standard uses the inherent angular resolution to predict the azimuth angles. However, it only models a simple linear relationship between the azimuth angles of neighboring points. Moreover, it does not optimize the quantization parameters for residuals on each coordinate axis in the spherical coordinate system. We propose a learning-based predictive coding method (LPCM) with both high-bitrate and low-bitrate coding modes. LPCM converts point clouds into predictive trees using the spherical coordinate system. In high-bitrate coding mode, we use a lightweight Long-Short-Term Memory-based predictive (LSTM-P) module that captures long-term geometry correlations between different coordinates to efficiently predict and compress the elevation angles. In low-bitrate coding mode, where geometry correlation degrades, we introduce a variational radius compression (VRC) module to directly compress the point radii. Then, we analyze why the quantization of spherical coordinates differs from that of Cartesian coordinates and propose a differential evolution (DE)-based quantization parameter selection method, which improves rate-distortion performance without increasing coding time. Experimental results on the LiDAR benchmark \textit{SemanticKITTI} and the MPEG-specified \textit{Ford} datasets show that LPCM outperforms G-PCC and other learning-based methods.