Abstract:Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
Abstract:Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering. While MLLMs demonstrate remarkable versatility, MLLMs appears limited performance on special applications. But tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert Specialization, where distribution shifts between pre-training and target datasets constrain target performance, and Open-World Stabilization, where catastrophic forgetting erases the model general knowledge. In this work, we systematically review recent advancements in MLLM tuning methodologies, classifying them into three paradigms: (I) Selective Tuning, (II) Additive Tuning, and (III) Reparameterization Tuning. Furthermore, we benchmark these tuning strategies across popular MLLM architectures and diverse downstream tasks to establish standardized evaluation analysis and systematic tuning principles. Finally, we highlight several open challenges in this domain and propose future research directions. To facilitate ongoing progress in this rapidly evolving field, we provide a public repository that continuously tracks developments: https://github.com/WenkeHuang/Awesome-MLLM-Tuning.
Abstract:Deep neural networks (DNNs) often exhibit biases toward certain categories during object recognition, even under balanced training data conditions. The intrinsic mechanisms underlying these biases remain unclear. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds.
Abstract:In object detection, the instance count is typically used to define whether a dataset exhibits a long-tail distribution, implicitly assuming that models will underperform on categories with fewer instances. This assumption has led to extensive research on category bias in datasets with imbalanced instance counts. However, models still exhibit category bias even in datasets where instance counts are relatively balanced, clearly indicating that instance count alone cannot explain this phenomenon. In this work, we first introduce the concept and measurement of category information amount. We observe a significant negative correlation between category information amount and accuracy, suggesting that category information amount more accurately reflects the learning difficulty of a category. Based on this observation, we propose Information Amount-Guided Angular Margin (IGAM) Loss. The core idea of IGAM is to dynamically adjust the decision space of each category based on its information amount, thereby reducing category bias in long-tail datasets. IGAM Loss not only performs well on long-tailed benchmark datasets such as LVIS v1.0 and COCO-LT but also shows significant improvement for underrepresented categories in the non-long-tailed dataset Pascal VOC. Comprehensive experiments demonstrate the potential of category information amount as a tool and the generality of our proposed method.
Abstract:In semi-supervised learning, methods that rely on confidence learning to generate pseudo-labels have been widely proposed. However, increasing research finds that when faced with noisy and biased data, the model's representation network is more reliable than the classification network. Additionally, label generation methods based on model predictions often show poor adaptability across different datasets, necessitating customization of the classification network. Therefore, we propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels. We also introduce an adaptive method for selecting hyperparameters in HDL, enhancing its versatility. Moreover, HDL can be combined with general image encoders (e.g., CLIP) to serve as a fundamental data processing module. We extract embeddings from datasets with class-balanced and long-tailed distributions using pre-trained semi-supervised models. Subsequently, samples are re-labeled using HDL, and the re-labeled samples are used to further train the semi-supervised models. Experiments demonstrate improved model performance, validating the motivation that representation networks are more reliable than classifiers or predictors. Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
Abstract:Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.
Abstract:Real-world data are long-tailed, the lack of tail samples leads to a significant limitation in the generalization ability of the model. Although numerous approaches of class re-balancing perform well for moderate class imbalance problems, additional knowledge needs to be introduced to help the tail class recover the underlying true distribution when the observed distribution from a few tail samples does not represent its true distribution properly, thus allowing the model to learn valuable information outside the observed domain. In this work, we propose to leverage the geometric information of the feature distribution of the well-represented head class to guide the model to learn the underlying distribution of the tail class. Specifically, we first systematically define the geometry of the feature distribution and the similarity measures between the geometries, and discover four phenomena regarding the relationship between the geometries of different feature distributions. Then, based on four phenomena, feature uncertainty representation is proposed to perturb the tail features by utilizing the geometry of the head class feature distribution. It aims to make the perturbed features cover the underlying distribution of the tail class as much as possible, thus improving the model's generalization performance in the test domain. Finally, we design a three-stage training scheme enabling feature uncertainty modeling to be successfully applied. Experiments on CIFAR-10/100-LT, ImageNet-LT, and iNaturalist2018 show that our proposed approach outperforms other similar methods on most metrics. In addition, the experimental phenomena we discovered are able to provide new perspectives and theoretical foundations for subsequent studies.
Abstract:In the context of the long-tail scenario, models exhibit a strong demand for high-quality data. Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance. Among these approaches, information augmentation has been progressively introduced as a crucial category. It achieves a balance in model performance by augmenting the richness and quantity of samples in the tail classes. However, there is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation methods. Consequently, the utilization of information augmentation in long-tail recognition tasks relies heavily on empirical and intricate fine-tuning. This work makes two primary contributions. Firstly, we approach the problem from the perspectives of feature diversity and distribution shift, introducing the concept of Feature Diversity Gain (FDG) to elucidate why information augmentation is effective. We find that the performance of information augmentation can be explained by FDG, and its performance peaks when FDG achieves an appropriate balance. Experimental results demonstrate that by using FDG to select augmented data, we can further enhance model performance without the need for any modifications to the model's architecture. Thus, data-centric approaches hold significant potential in the field of long-tail recognition, beyond the development of new model structures. Furthermore, we systematically introduce the core components and fundamental tasks of a data-centric long-tail learning framework for the first time. These core components guide the implementation and deployment of the system, while the corresponding fundamental tasks refine and expand the research area.
Abstract:In scenarios with long-tailed distributions, the model's ability to identify tail classes is limited due to the under-representation of tail samples. Class rebalancing, information augmentation, and other techniques have been proposed to facilitate models to learn the potential distribution of tail classes. The disadvantage is that these methods generally pursue models with balanced class accuracy on the data manifold, while ignoring the ability of the model to resist interference. By constructing noisy data manifold, we found that the robustness of models trained on unbalanced data has a long-tail phenomenon. That is, even if the class accuracy is balanced on the data domain, it still has bias on the noisy data manifold. However, existing methods cannot effectively mitigate the above phenomenon, which makes the model vulnerable in long-tailed scenarios. In this work, we propose an Orthogonal Uncertainty Representation (OUR) of feature embedding and an end-to-end training strategy to improve the long-tail phenomenon of model robustness. As a general enhancement tool, OUR has excellent compatibility with other methods and does not require additional data generation, ensuring fast and efficient training. Comprehensive evaluations on long-tailed datasets show that our method significantly improves the long-tail phenomenon of robustness, bringing consistent performance gains to other long-tailed learning methods.
Abstract:The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.