Abstract:Genetic programming has undergone rapid development in recent years. However, theoretical studies of genetic programming are far behind. One of the major obstacles to theoretical studies is the challenge of developing a model to describe the relationship between fitness values and program genotypes. In this paper, we take linear genetic programming (LGP) as an example to study the fitness-to-genotype relationship. We find that the fitness expectation increases with fitness supremum over instruction editing distance, considering 1) the fitness supremum linearly increases with the instruction editing distance in LGP, 2) the fitness infimum is fixed, and 3) the fitness probabilities over different instruction editing distances are similar. We then extend these findings to explain the bloat effect and the minimum hitting time of LGP based on instruction editing distance. The bloat effect happens because it is more likely to produce better offspring by adding instructions than by removing them, given an instruction editing distance from the optimal program. The analysis of the minimum hitting time suggests that for a basic LGP genetic operator (i.e., freemut), maintaining a necessarily small program size and mutating multiple instructions each time can improve LGP performance. The reported empirical results verify our hypothesis.
Abstract:Machine learning techniques play an important role in analyzing spectral data. The spectral data of fish biomass is useful in fish production, as it carries many important chemistry properties of fish meat. However, it is challenging for existing machine learning techniques to comprehensively discover hidden patterns from fish biomass spectral data since the spectral data often have a lot of noises while the training data are quite limited. To better analyze fish biomass spectral data, this paper models it as a symbolic regression problem and solves it by a linear genetic programming method with newly proposed tunable primitives. In the symbolic regression problem, linear genetic programming automatically synthesizes regression models based on the given primitives and training data. The tunable primitives further improve the approximation ability of the regression models by tuning their inherent coefficients. Our empirical results over ten fish biomass targets show that the proposed method improves the overall performance of fish biomass composition prediction. The synthesized regression models are compact and have good interpretability, which allow us to highlight useful features over the spectrum. Our further investigation also verifies the good generality of the proposed method across various spectral data treatments and other symbolic regression problems.
Abstract:Large language models (LLMs) have revolutionized algorithm development, yet their application in symbolic regression, where algorithms automatically discover symbolic expressions from data, remains constrained and is typically designed manually by human experts. In this paper, we propose a learning-to-evolve framework that enables LLMs to automatically design selection operators for evolutionary symbolic regression algorithms. We first identify two key limitations in existing LLM-based algorithm evolution techniques: code bloat and a lack of semantic guidance. Bloat results in unnecessarily complex components, and the absence of semantic awareness can lead to ineffective exchange of useful code components, both of which can reduce the interpretability of the designed algorithm or hinder evolutionary learning progress. To address these issues, we enhance the LLM-based evolution framework for meta symbolic regression with two key innovations: bloat control and a complementary, semantics-aware selection operator. Additionally, we embed domain knowledge into the prompt, enabling the LLM to generate more effective and contextually relevant selection operators. Our experimental results on symbolic regression benchmarks show that LLMs can devise selection operators that outperform nine expert-designed baselines, achieving state-of-the-art performance. This demonstrates that LLMs can exceed expert-level algorithm design for symbolic regression.
Abstract:Meta-Black-Box Optimization (MetaBBO) garners attention due to its success in automating the configuration and generation of black-box optimizers, significantly reducing the human effort required for optimizer design and discovering optimizers with higher performance than classic human-designed optimizers. However, existing MetaBBO methods conduct one-off training under the assumption that a stationary problem distribution with extensive and representative training problem samples is pre-available. This assumption is often impractical in real-world scenarios, where diverse problems following shifting distribution continually arise. Consequently, there is a pressing need for methods that can continuously learn from new problems encountered on-the-fly and progressively enhance their capabilities. In this work, we explore a novel paradigm of lifelong learning in MetaBBO and introduce LiBOG, a novel approach designed to learn from sequentially encountered problems and generate high-performance optimizers for Black-Box Optimization (BBO). LiBOG consolidates knowledge both across tasks and within tasks to mitigate catastrophic forgetting. Extensive experiments demonstrate LiBOG's effectiveness in learning to generate high-performance optimizers in a lifelong learning manner, addressing catastrophic forgetting while maintaining plasticity to learn new tasks.
Abstract:Cost-aware Dynamic Workflow Scheduling (CADWS) is a key challenge in cloud computing, focusing on devising an effective scheduling policy to efficiently schedule dynamically arriving workflow tasks, represented as Directed Acyclic Graphs (DAG), to suitable virtual machines (VMs). Deep reinforcement learning (DRL) has been widely employed for automated scheduling policy design. However, the performance of DRL is heavily influenced by the design of the problem-tailored policy network and is highly sensitive to hyperparameters and the design of reward feedback. Considering the above-mentioned issues, this study proposes a novel DRL method combining Graph Attention Networks-based policy network and Evolution Strategy, referred to as GATES. The contributions of GATES are summarized as follows: (1) GATES can capture the impact of current task scheduling on subsequent tasks by learning the topological relationships between tasks in a DAG. (2) GATES can learn the importance of each VM to ready tasks, increasing the chance of selecting the optimal VM. (3) Utilizing Evolution Strategy's robustness, exploratory nature, and tolerance for delayed rewards, GATES achieves stable policy learning in CADWS. Extensive experimental results demonstrate the superiority of the proposed GATES in CADWS, outperforming several state-of-the-art algorithms. Codes are available at: https://github.com/YaShen998/GATES
Abstract:Recent advancements in deep learning and aerial imaging have transformed wildlife monitoring, enabling researchers to survey wildlife populations at unprecedented scales. Unmanned Aerial Vehicles (UAVs) provide a cost-effective means of capturing high-resolution imagery, particularly for monitoring densely populated seabird colonies. In this study, we assess the performance of a general-purpose avian detection model, BirdDetector, in estimating the breeding population of Salvin's albatross (Thalassarche salvini) on the Bounty Islands, New Zealand. Using drone-derived imagery, we evaluate the model's effectiveness in both zero-shot and fine-tuned settings, incorporating enhanced inference techniques and stronger augmentation methods. Our findings indicate that while applying the model in a zero-shot setting offers a strong baseline, fine-tuning with annotations from the target domain and stronger image augmentation leads to marked improvements in detection accuracy. These results highlight the potential of leveraging pre-trained deep-learning models for species-specific monitoring in remote and challenging environments.
Abstract:Large Language Models (LLMs) have been extensively used across diverse domains, including virtual assistants, automated code generation, and scientific research. However, they remain vulnerable to jailbreak attacks, which manipulate the models into generating harmful responses despite safety alignment. Recent studies have shown that current safety-aligned LLMs often undergo the shallow safety alignment, where the first few tokens largely determine whether the response will be harmful. Through comprehensive observations, we find that safety-aligned LLMs and various defense strategies generate highly similar initial tokens in their refusal responses, which we define as safety trigger tokens. Building on this insight, we propose \texttt{D-STT}, a simple yet effective defense algorithm that identifies and explicitly decodes safety trigger tokens of the given safety-aligned LLM to trigger the model's learned safety patterns. In this process, the safety trigger is constrained to a single token, which effectively preserves model usability by introducing minimum intervention in the decoding process. Extensive experiments across diverse jailbreak attacks and benign prompts demonstrate that \ours significantly reduces output harmfulness while preserving model usability and incurring negligible response time overhead, outperforming ten baseline methods.
Abstract:Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
Abstract:Appropriate traffic state representation is crucial for learning traffic signal control policies. However, most of the current traffic state representations are heuristically designed, with insufficient theoretical support. In this paper, we (1) develop a flexible, efficient, and theoretically grounded method, namely generalized phase pressure (G2P) control, which takes only simple lane features into consideration to decide which phase to be actuated; 2) extend the pressure control theory to a general form for multi-homogeneous-lane road networks based on queueing theory; (3) design a new traffic state representation based on the generalized phase state features from G2P control; and 4) develop a reinforcement learning (RL)-based algorithm template named G2P-XLight, and two RL algorithms, G2P-MPLight and G2P-CoLight, by combining the generalized phase state representation with MPLight and CoLight, two well-performed RL methods for learning traffic signal control policies. Extensive experiments conducted on multiple real-world datasets demonstrate that G2P control outperforms the state-of-the-art (SOTA) heuristic method in the transportation field and other recent human-designed heuristic methods; and that the newly proposed G2P-XLight significantly outperforms SOTA learning-based approaches. Our code is available online.
Abstract:Class imbalance would lead to biased classifiers that favor the majority class and disadvantage the minority class. Unfortunately, from a practical perspective, the minority class is of importance in many real-life applications. Hybrid sampling methods address this by oversampling the minority class to increase the number of its instances, followed by undersampling to remove low-quality instances. However, most existing sampling methods face difficulties in generating diverse high-quality instances and often fail to remove noise or low-quality instances on a larger scale effectively. This paper therefore proposes an evolutionary multi-granularity hybrid sampling method, called EvoSampling. During the oversampling process, genetic programming (GP) is used with multi-task learning to effectively and efficiently generate diverse high-quality instances. During the undersampling process, we develop a granular ball-based undersampling method that removes noise in a multi-granular fashion, thereby enhancing data quality. Experiments on 20 imbalanced datasets demonstrate that EvoSampling effectively enhances the performance of various classification algorithms by providing better datasets than existing sampling methods. Besides, ablation studies further indicate that allowing knowledge transfer accelerates the GP's evolutionary learning process.