Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
Abstract:This paper introduces PROTEUS, a fully automated system that produces data-driven hypotheses from raw data files. We apply PROTEUS to clinical proteogenomics, a field where effective downstream data analysis and hypothesis proposal is crucial for producing novel discoveries. PROTEUS uses separate modules to simulate different stages of the scientific process, from open-ended data exploration to specific statistical analysis and hypothesis proposal. It formulates research directions, tools, and results in terms of relationships between biological entities, using unified graph structures to manage complex research processes. We applied PROTEUS to 10 clinical multiomics datasets from published research, arriving at 360 total hypotheses. Results were evaluated through external data validation and automatic open-ended scoring. Through exploratory and iterative research, the system can navigate high-throughput and heterogeneous multiomics data to arrive at hypotheses that balance reliability and novelty. In addition to accelerating multiomic analysis, PROTEUS represents a path towards tailoring general autonomous systems to specialized scientific domains to achieve open-ended hypothesis generation from data.
Abstract:Optimal execution in financial markets refers to the process of strategically transacting a large volume of assets over a period to achieve the best possible outcome by balancing the trade-off between market impact costs and timing or volatility risks. Traditional optimal execution strategies, such as static Almgren-Chriss models, often prove suboptimal in dynamic financial markets. This paper propose flowOE, a novel imitation learning framework based on flow matching models, to address these limitations. FlowOE learns from a diverse set of expert traditional strategies and adaptively selects the most suitable expert behavior for prevailing market conditions. A key innovation is the incorporation of a refining loss function during the imitation process, enabling flowOE not only to mimic but also to improve upon the learned expert actions. To the best of our knowledge, this work is the first to apply flow matching models in a stochastic optimal execution problem. Empirical evaluations across various market conditions demonstrate that flowOE significantly outperforms both the specifically calibrated expert models and other traditional benchmarks, achieving higher profits with reduced risk. These results underscore the practical applicability and potential of flowOE to enhance adaptive optimal execution.
Abstract:Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
Abstract:We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
Abstract:Document Image Enhancement (DIE) serves as a critical component in Document AI systems, where its performance substantially determines the effectiveness of downstream tasks. To address the limitations of existing methods confined to single-degradation restoration or grayscale image processing, we present Global with Local Parametric Generation Enhancement Network (GL-PGENet), a novel architecture designed for multi-degraded color document images, ensuring both efficiency and robustness in real-world scenarios. Our solution incorporates three key innovations: First, a hierarchical enhancement framework that integrates global appearance correction with local refinement, enabling coarse-to-fine quality improvement. Second, a Dual-Branch Local-Refine Network with parametric generation mechanisms that replaces conventional direct prediction, producing enhanced outputs through learned intermediate parametric representations rather than pixel-wise mapping. This approach enhances local consistency while improving model generalization. Finally, a modified NestUNet architecture incorporating dense block to effectively fuse low-level pixel features and high-level semantic features, specifically adapted for document image characteristics. In addition, to enhance generalization performance, we adopt a two-stage training strategy: large-scale pretraining on a synthetic dataset of 500,000+ samples followed by task-specific fine-tuning. Extensive experiments demonstrate the superiority of GL-PGENet, achieving state-of-the-art SSIM scores of 0.7721 on DocUNet and 0.9480 on RealDAE. The model also exhibits remarkable cross-domain adaptability and maintains computational efficiency for high-resolution images without performance degradation, confirming its practical utility in real-world scenarios.
Abstract:Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA's components on overall model performance. Code is available at https://github.com/mulin-ahu/DenseLoRA.
Abstract:Short videos are an effective tool for promoting contents and improving knowledge accessibility. While existing extractive video summarization methods struggle to produce a coherent narrative, existing abstractive methods cannot `quote' from the input videos, i.e., inserting short video clips in their outputs. In this work, we explore novel video editing models for generating shorts that feature a coherent narrative with embedded video insertions extracted from a long input video. We propose a novel retrieval-embedded generation framework that allows a large language model to quote multimodal resources while maintaining a coherent narrative. Our proposed REGen system first generates the output story script with quote placeholders using a finetuned large language model, and then uses a novel retrieval model to replace the quote placeholders by selecting a video clip that best supports the narrative from a pool of candidate quotable video clips. We examine the proposed method on the task of documentary teaser generation, where short interview insertions are commonly used to support the narrative of a documentary. Our objective evaluations show that the proposed method can effectively insert short video clips while maintaining a coherent narrative. In a subjective survey, we show that our proposed method outperforms existing abstractive and extractive approaches in terms of coherence, alignment, and realism in teaser generation.
Abstract:Though robotic dexterous manipulation has progressed substantially recently, challenges like in-hand occlusion still necessitate fine-grained tactile perception, leading to the integration of more tactile sensors into robotic hands. Consequently, the increased data volume imposes substantial bandwidth pressure on signal transmission from the hand's controller. However, the acquisition and compression of multi-point tactile signals based on the dexterous hands' physical structures have not been thoroughly explored. In this paper, our contributions are twofold. First, we introduce a Multi-Point Tactile Dataset for Dexterous Hand Grasping (Dex-MPTD). This dataset captures tactile signals from multiple contact sensors across various objects and grasping poses, offering a comprehensive benchmark for advancing dexterous robotic manipulation research. Second, we investigate both lossless and lossy compression on Dex-MPTD by converting tactile data into images and applying six lossless and five lossy image codecs for efficient compression. Experimental results demonstrate that tactile data can be losslessly compressed to as low as 0.0364 bits per sub-sample (bpss), achieving approximately 200$\times$ compression ratio compared to the raw tactile data. Efficient lossy compressors like HM and VTM can achieve about 1000x data reductions while preserving acceptable data fidelity. The exploration of lossy compression also reveals that screen-content-targeted coding tools outperform general-purpose codecs in compressing tactile data.
Abstract:Transferring 2D textures to 3D modalities is of great significance for improving the efficiency of multimedia content creation. Existing approaches have rarely focused on transferring image textures onto 3D representations. 3D style transfer methods are capable of transferring abstract artistic styles to 3D scenes. However, these methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT^2-GS, a geometry-aware texture transfer framework for gaussian splitting. From the perspective of matching texture features with geometric information in rendered views, we identify the issue of insufficient texture features and propose a geometry-aware texture augmentation module to expand the texture feature set. Moreover, a geometry-consistent texture loss is proposed to optimize texture features into the scene representation. This loss function incorporates both camera pose and 3D geometric information of the scene, enabling controllable texture-oriented appearance editing. Finally, a geometry preservation strategy is introduced. By alternating between the texture transfer and geometry correction stages over multiple iterations, this strategy achieves a balance between learning texture features and preserving geometric integrity. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
Abstract:Goal-oriented script planning, or the ability to devise coherent sequences of actions toward specific goals, is commonly employed by humans to plan for typical activities. In e-commerce, customers increasingly seek LLM-based assistants to generate scripts and recommend products at each step, thereby facilitating convenient and efficient shopping experiences. However, this capability remains underexplored due to several challenges, including the inability of LLMs to simultaneously conduct script planning and product retrieval, difficulties in matching products caused by semantic discrepancies between planned actions and search queries, and a lack of methods and benchmark data for evaluation. In this paper, we step forward by formally defining the task of E-commerce Script Planning (EcomScript) as three sequential subtasks. We propose a novel framework that enables the scalable generation of product-enriched scripts by associating products with each step based on the semantic similarity between the actions and their purchase intentions. By applying our framework to real-world e-commerce data, we construct the very first large-scale EcomScript dataset, EcomScriptBench, which includes 605,229 scripts sourced from 2.4 million products. Human annotations are then conducted to provide gold labels for a sampled subset, forming an evaluation benchmark. Extensive experiments reveal that current (L)LMs face significant challenges with EcomScript tasks, even after fine-tuning, while injecting product purchase intentions improves their performance.