Abstract:Phonetic Cloaking Replacement (PCR), defined as the deliberate use of homophonic or near-homophonic variants to hide toxic intent, has become a major obstacle to Chinese content moderation. While this problem is well-recognized, existing evaluations predominantly rely on rule-based, synthetic perturbations that ignore the creativity of real users. We organize PCR into a four-way surface-form taxonomy and compile \ours, a dataset of 500 naturally occurring, phonetically cloaked offensive posts gathered from the RedNote platform. Benchmarking state-of-the-art LLMs on this dataset exposes a serious weakness: the best model reaches only an F1-score of 0.672, and zero-shot chain-of-thought prompting pushes performance even lower. Guided by error analysis, we revisit a Pinyin-based prompting strategy that earlier studies judged ineffective and show that it recovers much of the lost accuracy. This study offers the first comprehensive taxonomy of Chinese PCR, a realistic benchmark that reveals current detectors' limits, and a lightweight mitigation technique that advances research on robust toxicity detection.
Abstract:Latent diffusion models have recently demonstrated superior capabilities in many downstream image synthesis tasks. However, customization of latent diffusion models using unauthorized data can severely compromise the privacy and intellectual property rights of data owners. Adversarial examples as protective perturbations have been developed to defend against unauthorized data usage by introducing imperceptible noise to customization samples, preventing diffusion models from effectively learning them. In this paper, we first reveal that the primary reason adversarial examples are effective as protective perturbations in latent diffusion models is the distortion of their latent representations, as demonstrated through qualitative and quantitative experiments. We then propose the Contrastive Adversarial Training (CAT) utilizing adapters as an adaptive attack against these protection methods, highlighting their lack of robustness. Extensive experiments demonstrate that our CAT method significantly reduces the effectiveness of protective perturbations in customization configurations, urging the community to reconsider and enhance the robustness of existing protective perturbation methods. Code is available at \hyperlink{here}{https://github.com/senp98/CAT}.
Abstract:Diffusion-based text-to-image models have shown immense potential for various image-related tasks. However, despite their prominence and popularity, customizing these models using unauthorized data also brings serious privacy and intellectual property issues. Existing methods introduce protective perturbations based on adversarial attacks, which are applied to the customization samples. In this systematization of knowledge, we present a comprehensive survey of protective perturbation methods designed to prevent unauthorized data usage in diffusion-based image generation. We establish the threat model and categorize the downstream tasks relevant to these methods, providing a detailed analysis of their designs. We also propose a completed evaluation framework for these perturbation techniques, aiming to advance research in this field.
Abstract:Identifying offensive language is essential for maintaining safety and sustainability in the social media era. Though large language models (LLMs) have demonstrated encouraging potential in social media analytics, they lack thorough evaluation when in offensive language detection, particularly in multilingual environments. We for the first time evaluate multilingual offensive language detection of LLMs in three languages: English, Spanish, and German with three LLMs, GPT-3.5, Flan-T5, and Mistral, in both monolingual and multilingual settings. We further examine the impact of different prompt languages and augmented translation data for the task in non-English contexts. Furthermore, we discuss the impact of the inherent bias in LLMs and the datasets in the mispredictions related to sensitive topics.