Xidian University
Abstract:Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
Abstract:This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: \href{http://github.com/HKUST-Aerial-Robotics/SG-Reg}{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.
Abstract:Model merging is a flexible and computationally tractable approach to merge single-task checkpoints into a multi-task model. Prior work has solely focused on constrained multi-task settings where there is a one-to-one mapping between a sample and a task, overlooking the paradigm where multiple tasks may operate on the same sample, e.g., scene understanding. In this paper, we focus on the multi-task setting with single-input-multiple-outputs (SIMO) and show that it qualitatively differs from the single-input-single-output model merging settings studied in the literature due to the existence of task-specific decoders and diverse loss objectives. We identify that existing model merging methods lead to significant performance degradation, primarily due to representation misalignment between the merged encoder and task-specific decoders. We propose two simple and efficient fixes for the SIMO setting to re-align the feature representation after merging. Compared to joint fine-tuning, our approach is computationally effective and flexible, and sheds light into identifying task relationships in an offline manner. Experiments on NYUv2, Cityscapes, and a subset of the Taskonomy dataset demonstrate: (1) task arithmetic suffices to enable multi-task capabilities; however, the representations generated by the merged encoder has to be re-aligned with the task-specific heads; (2) the proposed architecture rivals traditional multi-task learning in performance but requires fewer samples and training steps by leveraging the existence of task-specific models.
Abstract:Wood defect detection is critical for ensuring quality control in the wood processing industry. However, current industrial applications face two major challenges: traditional methods are costly, subjective, and labor-intensive, while mainstream deep learning models often struggle to balance detection accuracy and computational efficiency for edge deployment. To address these issues, this study proposes CFIS-YOLO, a lightweight object detection model optimized for edge devices. The model introduces an enhanced C2f structure, a dynamic feature recombination module, and a novel loss function that incorporates auxiliary bounding boxes and angular constraints. These innovations improve multi-scale feature fusion and small object localization while significantly reducing computational overhead. Evaluated on a public wood defect dataset, CFIS-YOLO achieves a mean Average Precision (mAP@0.5) of 77.5\%, outperforming the baseline YOLOv10s by 4 percentage points. On SOPHON BM1684X edge devices, CFIS-YOLO delivers 135 FPS, reduces power consumption to 17.3\% of the original implementation, and incurs only a 0.5 percentage point drop in mAP. These results demonstrate that CFIS-YOLO is a practical and effective solution for real-world wood defect detection in resource-constrained environments.
Abstract:Knee-less bipedal robots like SLIDER have the advantage of ultra-lightweight legs and improved walking energy efficiency compared to traditional humanoid robots. In this paper, we firstly introduce an improved hardware design of the bipedal robot SLIDER with new line-feet and more optimized mass distribution which enables higher locomotion speeds. Secondly, we propose an extended Hybrid Zero Dynamics (eHZD) method, which can be applied to prismatic joint robots like SLIDER. The eHZD method is then used to generate a library of gaits with varying reference velocities in an offline way. Thirdly, a Guided Deep Reinforcement Learning (DRL) algorithm is proposed to use the pre-generated library to create walking control policies in real-time. This approach allows us to combine the advantages of both HZD (for generating stable gaits with a full-dynamics model) and DRL (for real-time adaptive gait generation). The experimental results show that this approach achieves 150% higher walking velocity than the previous MPC-based approach.
Abstract:Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning.
Abstract:The past a few years have witnessed the great success of large language models, demonstrating powerful capabilities in comprehending textual data and generating human-like languages. Large language models achieve success by being trained on vast amounts of textual data, including online sources with copyrighted content and user-generated knowledge. However, this comes at a cost: the potential risk of exposing users' privacy and violating copyright protections. Thus, to safeguard individuals' "right to be forgotten", there has been increasing interests in machine unlearning -- the process of removing information carried by particular training samples from a model while not deteriorating its predictive quality. This is a challenging task due to the black-box nature of language models. Most existing studies focus on mitigating the impact of those forgot samples upon a model's outputs, and do not explicitly consider the geometric distributions of samples in the latent space of a model. To address this issue, we propose a machine unlearning framework, named Deep Contrastive Unlearning for fine-Tuning (DeepCUT) language models. Our proposed model achieves machine unlearning by directly optimizing the latent space of a model. Comprehensive experiments on real-world datasets demonstrate the effectiveness and efficiency of DeepCUT with consistent and significant improvement over baseline methods.
Abstract:Large Multimodal Models (LMMs) have demonstrated exceptional performance across a wide range of domains. This paper explores their potential in pronunciation assessment tasks, with a particular focus on evaluating the capabilities of the Generative Pre-trained Transformer (GPT) model, specifically GPT-4o. Our study investigates its ability to process speech and audio for pronunciation assessment across multiple levels of granularity and dimensions, with an emphasis on feedback generation and scoring. For our experiments, we use the publicly available Speechocean762 dataset. The evaluation focuses on two key aspects: multi-level scoring and the practicality of the generated feedback. Scoring results are compared against the manual scores provided in the Speechocean762 dataset, while feedback quality is assessed using Large Language Models (LLMs). The findings highlight the effectiveness of integrating LMMs with traditional methods for pronunciation assessment, offering insights into the model's strengths and identifying areas for further improvement.
Abstract:In the field of autonomous driving, end-to-end deep learning models show great potential by learning driving decisions directly from sensor data. However, training these models requires large amounts of labeled data, which is time-consuming and expensive. Considering that the real-world driving data exhibits a long-tailed distribution where simple scenarios constitute a majority part of the data, we are thus inspired to identify the most challenging scenarios within it. Subsequently, we can efficiently improve the performance of the model by training with the selected data of the highest value. Prior research has focused on the selection of valuable data by empirically designed strategies. However, manually designed methods suffer from being less generalizable to new data distributions. Observing that the BEV (Bird's Eye View) features in end-to-end models contain all the information required to represent the scenario, we propose an active learning framework that relies on these vectorized scene-level features, called SEAD. The framework selects initial data based on driving-environmental information and incremental data based on BEV features. Experiments show that we only need 30\% of the nuScenes training data to achieve performance close to what can be achieved with the full dataset. The source code will be released.
Abstract:Nowadays, with the advancement of deep neural networks (DNNs) and the availability of large-scale datasets, the face recognition (FR) model has achieved exceptional performance. However, since the parameter magnitude of the fully connected (FC) layer directly depends on the number of identities in the dataset. If training the FR model on large-scale datasets, the size of the model parameter will be excessively huge, leading to substantial demand for computational resources, such as time and memory. This paper proposes the attention fully connected (AttFC) layer, which could significantly reduce computational resources. AttFC employs an attention loader to generate the generative class center (GCC), and dynamically store the class center with Dynamic Class Container (DCC). DCC only stores a small subset of all class centers in FC, thus its parameter count is substantially less than the FC layer. Also, training face recognition models on large-scale datasets with one GPU often encounter out-of-memory (OOM) issues. AttFC overcomes this and achieves comparable performance to state-of-the-art methods.