Alert button
Picture for Oleg Sushkov

Oleg Sushkov

Alert button

RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation

Add code
Bookmark button
Alert button
Jun 20, 2023
Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott Reed, Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Tom Rothörl, José Enrique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, Nicolas Heess

Viaarxiv icon

Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation

Add code
Bookmark button
Alert button
Dec 02, 2021
Todor Davchev, Oleg Sushkov, Jean-Baptiste Regli, Stefan Schaal, Yusuf Aytar, Markus Wulfmeier, Jon Scholz

Figure 1 for Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation
Figure 2 for Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation
Figure 3 for Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation
Figure 4 for Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation
Viaarxiv icon

Offline Meta-Reinforcement Learning for Industrial Insertion

Add code
Bookmark button
Alert button
Oct 12, 2021
Tony Z. Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz, Stefan Schaal, Sergey Levine

Figure 1 for Offline Meta-Reinforcement Learning for Industrial Insertion
Figure 2 for Offline Meta-Reinforcement Learning for Industrial Insertion
Figure 3 for Offline Meta-Reinforcement Learning for Industrial Insertion
Figure 4 for Offline Meta-Reinforcement Learning for Industrial Insertion
Viaarxiv icon

Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study

Add code
Bookmark button
Alert button
Mar 23, 2021
Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Wenzhao Lian, Chang Su, Mel Vecerik, Ning Ye, Stefan Schaal, Jon Scholz

Figure 1 for Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study
Figure 2 for Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study
Figure 3 for Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study
Figure 4 for Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study
Viaarxiv icon

S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency

Add code
Bookmark button
Alert button
Oct 13, 2020
Mel Vecerik, Jean-Baptiste Regli, Oleg Sushkov, David Barker, Rugile Pevceviciute, Thomas Rothörl, Christopher Schuster, Raia Hadsell, Lourdes Agapito, Jonathan Scholz

Figure 1 for S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency
Figure 2 for S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency
Figure 3 for S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency
Figure 4 for S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency
Viaarxiv icon

A Framework for Data-Driven Robotics

Add code
Bookmark button
Alert button
Sep 26, 2019
Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed, Rae Jeong, Konrad Żołna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, Ziyu Wang

Figure 1 for A Framework for Data-Driven Robotics
Figure 2 for A Framework for Data-Driven Robotics
Figure 3 for A Framework for Data-Driven Robotics
Figure 4 for A Framework for Data-Driven Robotics
Viaarxiv icon

A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning

Add code
Bookmark button
Alert button
Oct 08, 2018
Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, Jon Scholz

Figure 1 for A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning
Figure 2 for A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning
Figure 3 for A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning
Figure 4 for A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning
Viaarxiv icon