Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
An empirical investigation of the challenges of real-world reinforcement learning

Mar 24, 2020
Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, Todd Hester

* arXiv admin note: text overlap with arXiv:1904.12901 

  Access Paper or Ask Questions

Robust Reinforcement Learning for Continuous Control with Model Misspecification

Jun 18, 2019
Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Timothy Mann, Todd Hester, Martin Riedmiller


  Access Paper or Ask Questions

Challenges of Real-World Reinforcement Learning

Apr 29, 2019
Gabriel Dulac-Arnold, Daniel Mankowitz, Todd Hester


  Access Paper or Ask Questions

Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards

Oct 08, 2018
Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, Martin Riedmiller


  Access Paper or Ask Questions

A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning

Oct 08, 2018
Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, Jon Scholz


  Access Paper or Ask Questions

Observe and Look Further: Achieving Consistent Performance on Atari

May 29, 2018
Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Večerík, Matteo Hessel, Rémi Munos, Olivier Pietquin


  Access Paper or Ask Questions

Safe Exploration in Continuous Action Spaces

Jan 26, 2018
Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, Yuval Tassa


  Access Paper or Ask Questions

Deep Q-learning from Demonstrations

Nov 22, 2017
Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys

* Published at AAAI 2018. Previously on arxiv as "Learning from Demonstrations for Real World Reinforcement Learning" 

  Access Paper or Ask Questions

Adaptive Lambda Least-Squares Temporal Difference Learning

Dec 30, 2016
Timothy A. Mann, Hugo Penedones, Shie Mannor, Todd Hester


  Access Paper or Ask Questions

A Real-Time Model-Based Reinforcement Learning Architecture for Robot Control

May 21, 2011
Todd Hester, Michael Quinlan, Peter Stone

* Added a reference Presents a real-time parallel architecture for model-based reinforcement learning methods 

  Access Paper or Ask Questions