Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

TAP-Vid: A Benchmark for Tracking Any Point in a Video


Nov 07, 2022
Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Recasens, Lucas Smaira, Yusuf Aytar, João Carreira, Andrew Zisserman, Yi Yang

* Published in NeurIPS Datasets and Benchmarks track, 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies


Dec 09, 2021
Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli, Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, Raia Hadsell


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Wish you were here: Hindsight Goal Selection for long-horizon dexterous manipulation


Dec 02, 2021
Todor Davchev, Oleg Sushkov, Jean-Baptiste Regli, Stefan Schaal, Yusuf Aytar, Markus Wulfmeier, Jon Scholz


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations


Apr 29, 2021
Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, Andrew Zisserman


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Manipulator-Independent Representations for Visual Imitation


Mar 18, 2021
Yuxiang Zhou, Yusuf Aytar, Konstantinos Bousmalis


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning rich touch representations through cross-modal self-supervision


Jan 21, 2021
Martina Zambelli, Yusuf Aytar, Francesco Visin, Yuxiang Zhou, Raia Hadsell


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Semi-supervised reward learning for offline reinforcement learning


Dec 12, 2020
Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan Cabi, Nando de Freitas

* Accepted to Offline Reinforcement Learning Workshop at Neural Information Processing Systems (2020) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Offline Learning from Demonstrations and Unlabeled Experience


Nov 27, 2020
Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Aytar, Misha Denil, Nando de Freitas, Scott Reed

* Accepted to Offline Reinforcement Learning Workshop at Neural Information Processing Systems (2020) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Large-scale multilingual audio visual dubbing


Nov 06, 2020
Yi Yang, Brendan Shillingford, Yannis Assael, Miaosen Wang, Wendi Liu, Yutian Chen, Yu Zhang, Eren Sezener, Luis C. Cobo, Misha Denil, Yusuf Aytar, Nando de Freitas

* 26 pages, 8 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Counting Out Time: Class Agnostic Video Repetition Counting in the Wild


Jun 27, 2020
Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, Andrew Zisserman

* Accepted at CVPR 2020. Project webpage: https://sites.google.com/view/repnet 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>