Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Jonathan Scholz

S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency

Oct 13, 2020
Mel Vecerik, Jean-Baptiste Regli, Oleg Sushkov, David Barker, Rugile Pevceviciute, Thomas Rothörl, Christopher Schuster, Raia Hadsell, Lourdes Agapito, Jonathan Scholz

* 11 pages, supplementary material available at: 

  Access Paper or Ask Questions

Improved Exploration through Latent Trajectory Optimization in Deep Deterministic Policy Gradient

Nov 15, 2019
Kevin Sebastian Luck, Mel Vecerik, Simon Stepputtis, Heni Ben Amor, Jonathan Scholz

* Accepted for IROS 2019 

  Access Paper or Ask Questions

A Framework for Data-Driven Robotics

Sep 26, 2019
Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed, Rae Jeong, Konrad Żołna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, Ziyu Wang

  Access Paper or Ask Questions

Generative predecessor models for sample-efficient imitation learning

Apr 01, 2019
Yannick Schroecker, Mel Vecerik, Jonathan Scholz

  Access Paper or Ask Questions

Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards

Oct 08, 2018
Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, Martin Riedmiller

  Access Paper or Ask Questions

PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations

Jul 24, 2017
Rico Jonschkowski, Roland Hafner, Jonathan Scholz, Martin Riedmiller

* Accepted at Robotics: Science and Systems (RSS 2017) Workshop -- New Frontiers for Deep Learning in Robotics 

  Access Paper or Ask Questions